
,_

® A Touch of Applesoft BASIC

Apple lie, Apple lie, Apple llGs™

LIMITED W ARRANfY ON MEDIA
AND REPIACEMENT

If you discover physical defects in
the manuals distributed with an
Apple product or in the media on
which a software product is distrib­
uted, Apple will replace the media
or manuals at no charge to you,
provided you return the item to be
replaced with proof of purchase to
Apple or an authorized Apple dealer
during the 90-day period after you
purchased the software. In addition,
Apple will replace damaged soft­
ware media and manuals for as long
as the software product is included
in Apple's Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your autho­
rized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different; check with your
authorized Apple dealer.

AIL IMPUED WARRANTIES ON
THE MEDIA AND MANUALS,
INCLUDING IMPUED WARRANTIES
OF MERCHANTABILITY AND FIT­
NESS FORA PARTICULAR PUR­
POSE, ARE LIMITED IN DURATION
TO NINE1Y (90) DAYS FROM THE
DATE OF THE ORIGINAL RETAIL
PURCHASE OF THIS PRODUCT.

Even though Apple has tested the
software and reviewed the docu­
mentation, APPLE MAKES NO WAR­
RANlY OR REPRESENTATION,
EITHER EXPRESS OR IMPUED,
WITH RESPECT TO SOFTWARE, ITS
QU.AIITY, PERFORMANCE, MER­
CHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS SOFTWARE IS SOLD
"AS IS," AND YOU THE PUR­
CHASER ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUAUTY
AND PERFORMANCE.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSE­
QUENTIAL DAMAGES RESULTING
FROM ANY DEFECT IN THE SOFT­
WARE OR ITS DOCUMENTATION,
even if advised of the possibility of
such damages. In particular, Apple
shall have no liability for any pro­
grams or data stored in or used with
Apple products, including the costs
of recovering such programs or
data.

THE WARRANfY AND REMEDIES
SET FORTH ABOVE ARE EXCLU­
SIVE AND IN llEU OF AIL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPUED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition
to this warranty.

Some states do not allow the ex­
clusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

• . Apple® II A Touch of Applesoft BASIC

W APPLE COMPUfER, INC.

© Copyright 1986, Apple
Computer, Inc., for all non­
textual material, graphics,
figures, photographs, and all
computer program listings or
code in any form, including
object and source code. All
rights reserved.

Apple and the Apple logo are
registered trademarks of Apple
Computer, Inc.

Macintosh is a trademark of
Mcintosh Laboratories, Inc.,
and is being used with express
permission of its owner.

Microsoft is a registered trade­
mark of Microsoft Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

ITC Garamond, ITC Avant
Garde Gothic, and ITC Zapf
DingbatS are registered
trademarks of International
Typeface Corporation.

Printed in Singapore.

Downloaded from www.Apple20nline.com

Contents

Preface vii

What's a computer language? vii

What's a program? viii

Do you have to program? viii

Why would you want to learn to program? viii

Patience required ix

How to get started ix

And now-begin! x

Session 1 Getting Started 1

The elementary stuff 2

Editing: program first aid 4

Summary and review 5

Session 2 Arithmetic and Variables 7

Arithmetic 8

Precedence: the order of calculations 10

Use parentheses to change precedence 10

Variables 11

Naming variables 13

Break a few rules 14

Summary and review 15

Contents iii

iv Contents

Session 3 The Outside World 17

INPUT 18

Prompts 19

More editing: adding lines 20

Cleaning up with HOME 20

LIST 21

String variables 22

Variables rules recap 23

Debugging 23

Summary and review 25

Session 4 Using the Disk and Other Devices 27
Computer memory 28

Files and catalogs 29

How to save programs 29

Reading the catalog and retrieving a program 31

Cleaning up 32

For printer owners: printing your listings 33

Using what you've learned 34

Summary and review 34

Session 5 Loops and Conditions 35

Loops 36

GOTO 36

Conditional branching with IF .. . THEN 37

Building on the model 38

Relational operators 38

Use REM for remarks 41

Practice time 41

Summary and review 42

Session 6 Graphics 43

Text and graphics 44

A 40-by-40 canvas 45

Seeing your listing again 46

Plotting colors with COLOR= 47

Using variables for plotting and coloring 47

Incrementing columns and rows 48

Drawing horizontal and vertical lines 48

A universal line-drawer 49

Random graphics 50

Summary and review 52

Session 7 Controlled Loops 53

FOR\NEXT 54

Using STEP with FOR\NEXT 56

Delay loops 57

A quick review 59

Experiment before you continue 60

Summary and review 60

Session 8 Programming With Style: Modular Programming 61

GOSUB \RETURN 62

END protects subroutines 63

Subroutines and organization 64

Multiple instructions on one line 65

Organizing your programs: one step at a time 66

The great checkbook balancing program challenge 67

One version of a checkbook balancing program 67

Summary and review 68

Contents v

Session 9 Formatting Screens 69

Horizontal and vertical tabs 70

Prompt placement 73

Getting noticed: INVERSE and NORMAL 74

A text-centering algorithm 75

One solution to the centering problem 75

Summary and review 76

Session 10 Programming for People 77

A sordid history 78

People-program guidelines 79

Humanizing programs isn't easy 81

It gets easier 81

Where do you go from here? 81

Do it! 82

A parting word 83

Appendix A A Summary of Applesoft Instructions 85

Appendix B Reserved Words 99

Glossary 101

Index 107

vi Contents

Preface

This tutorial will help you get started writing simple Applesoft BASIC computer
programs on your Apple® II computer. You won't learn all there is to know about
Applesoft BASIC from just this tutorial; but by the time you finish these ten sessions,
you'll be able to decide whether you want to continue learning about programming.

The product training disk that came with your computer gives you a brief introduction
to Applesoft; you might want to work with that disk before you read this tutorial.

What's a computer language?
A computer language is like the languages that people speak. It has a vocabulary and
a syntax- word order is important and spelling counts. Your Apple computer speaks
a language called Applesoft BASIC. (It speaks other languages, too, but they aren't
built into the computer; you buy them on disks.) The computer reads the BASIC
instructions you type from the keyboard, and then it does exactly what it's told.
Luckily, it's easier to learn BASIC than a human language because BASIC has far fewer
words, and its grammar is usually very straightforward.

•:• BASIC by any other name •.. There are many variations on the BASIC computer
language. But in this little tutorial the terms BASIC, Applesoft BASIC, and
Applesojt all refer to the same thing.

What's a computer language? vii

What's a program?
Computer programming is writing instructions for your computer. The entire set of
instructions you give to a computer to make it do something is the program. Imagine
that your computer is a pet you want to train. You can't talk to your pet in the same
way you talk with a human; you have to use a limited vocabulary to tell it exactly what
to do. If you wanted it to do a series of things, you would give it a set of instructions,
one instruction at a time. For instance, suppose you want your pet to sit, lie down,
and roll over. You'd do it like this:

"King, sit."

(King sits.)

"King, lie down."

(King lies down.)

"King, roll over."

(King rolls over.)

"Good dog!"

(King wags tail.)

Of course your Apple won't sit, lie down, or roll over, but it will do a lot of things for
you if you give it instructions in a systematic and logical order. You use the same kind
of directness, simplicity, and order in computer programming as in pet training
(except that you don't have to praise your computer when it does what you tell it).

Do you hove to program?
You don't have to write programs to use your computer. Thousands of programs
have already been written for your Apple-programs for word processing, financial
analysis, computerized file cabinets, and dozens of other applications. You just put
a disk with programs on it into your disk drive and turn on your computer.

Why would you want to learn to program?
First of all, you might find programming to be a lot of fun. When you learn to
program, you discover that your Apple isn't really magical (although it certainly
seems that way at times); it's just following the instructions that you give it. When you
program your computer, you make it do what you want it to do--you get to create your
own magic. Second, you learn a lot about how a computer works as you learn to

viii Preface

program it. That gives you a better understanding of what your computer can and
can't do. Finally, you might find that programming is something that really intrigues
you and stimulates your own creativity in ways you'd never thought about. You might
eventually decide to become a professional programmer.

You can create simple entertainment, educational, and business programs with just
an elementary set of instructions. For example, you can write very effective
educational games in Applesoft BASIC, or even home budgeting and checkbook
programs to keep your finances in order.

Writing your own program is an option available on your Apple. While you're likely
to find programming useful and interesting, you don't have to learn how to program
to use your computer. But if you do want to program, you'll find Applesoft BASIC a
great place to start.

Patience required
Learning to program is a little like learning how to become a chef. You've got to be an
experienced chef to pull off great seven-course meals; but the essentials of the craft
begin with melting butter, turning an egg, and so on. And the payoff is similar, too.
You don't have to be a master chef to enjoy a homemade omelette (or amaze your
friends with your culinary prowess).

From time to time, you'll just have to be patient--but only for a little while. Have
fai th .

How to get started
Applesoft is built into your Apple II computer. But you need to prepare your
computer to store the programs you create so that you can use them again. (You'll
learn more about storing your programs onto disk in Session 4.) Here are the steps to
take to begin your study of Applesoft BASIC:

1. Read your Apple computer owner's guide first. It contains lots of valuable
information about the computer that you'll need to know before you can begin to
use Applesoft. Pay special attention to the section on formatting disks. You'll
need at least one formatted disk before you can start.

2. Insert the utilities disk that came with your computer into the disk drive, close the
disk drive door, and turn on the computer. (See your owner's manual for
instructions.) Choose the Applesoft BASIC option and press Return; you should
see this symbol:).

3 . Remove the disk from the drive and replace it with a formatted disk. Be sure to
close the drive door.

How to get started ix

•!• Using Applesoft without a disk drive: If you don't have a disk drive, you can still
write programs; but you won't be able to store them. To start BASIC without a disk
drive, turn on your computer and then press the Control and Reset keys at the
same time, then release them. You'll see this symbol:].

And now-begin!
This tutorial is divided into ten sessions; you'll need about an hour for each session.
Be sure to spend lots of time practicing what you've learned in each session before
going on to the next one; each session builds on the previous one.

Above all, have a good time. Experiment as much as you can. Break the rules. Try
crazy things-the worst thing that can happen is that the computer will beep at you.
(When this happens, beep back.)

Now, all you have to do is tum the page and begin.

x Preface

Session 1

Getting Started

The best way to find out if you like programming is to do some. To keep
things simple, do everything exactly as it's presented in this tutorial. Of
course if you get bored, strike out on your own! You won't break the
computer by typing something wrong, and the important thing is to
experiment, learn, and have fun.

In this first session, you'll learn the rudiments. You'll read about program
lines and line numbers, and how to type in programs. You'll see how to
put messages on the screen with the PRINT instruction, and you'll learn
some things about programming mistakes and how to fix them.

The elementary stuff
Before you do anything else, type the word NEW and press the Return key.
NEW tells your Apple computer to make way for a new program. Pressing
Return tells your Apple to look at what you just typed. Until you press
Return, your Apple thinks you're just talking to yourself:

NEW -----------------Press Return here.

Now type the following line exactly as you see it, and then press Return:

10 PRINT "SIT" ------------Press Return here.

The number 10 is called a line number. Your Apple executes the lines of
instructions you type in numeric order, always beginning with the lowest
number. For the time being, number your program lines by lO's. You'll
learn why later in Session 3.

After you've typed all the instructions (which you've just done-your first
program is a short one), type RUN and press Return. The RUN command
tells your Apple that you've finished giving it instructions and that you want
it to carry them out:

RUN -----------------Press Return here.

Your video display should look something like this:

]NEW

]10 PRINT "SIT"

]RUN

] SIT

JI

2 Getting Started

You've just written and executed (another word for run) your first computer
program. Congratulations! You've also just learned one of the most often
used programming instructions: PRINT. The PRINT instruction tells your
computer to display whatever appears within quotation marks. Here's
some more practice using PRINT. Type the following program exactly as it
appears. (If you make a mistake, just press Return and retype the line.) Be
sure to press Return at the end of each line:

10 print "lie down"

2 0 Print "Rol l Over"

30 pRiNt "GeT wEiRd"

RUN

You'll see this on your screen:

l i e down

Roll Ov e r

GeT wEiRd

•!• Why you don't need NEW here: When you re-use a line number, the new line
replaces the old one. The last program you typed had only one line-line 10.
This new program also has a line 10, replacing the old one. It's as if you'd typed
NEW anyway.

Your computer doesn't care whether the letters are uppercase or
lowercase, or some combination of both. But you've got to be careful how
you type your instructions. Your computer expects to be told exactly what
to do in a way that it can understand or you'll get an error message like this
one:

?SYNTAX ERROR IN 10

Computers always do exactrywhat you say, not necessarily what you mean
to say. Even minor typing errors will bring up a syntax error message
(usually with a line number to help you find the error). Type:

NEW

and press Return; then type this one-line program and try running it:

10 PRIMT "WHOOPS"-----------Watch out!!

t
(Be sure to press Return at the end of the line-this is your last reminder.)

After you run the program, you'll see this message:

?SYNTAX ERROR IN 10 ----------10 is the line number.

The elementary stuff 3

Even though you and any other human who saw it would know that you
meant PRINT instead of PRIMT, the instruction baffled your Apple. Luckily,
most mistakes make your computer show a built-in error message that will
tell you what you did wrong. As you program more (and, naturally, make
more mistakes along the way), you'll see more messages to help you
understand how your computer operates. Remember: the computer
displays error messages to help you correct mistakes, not to tell you you're
a dummy. Treat these messages as helpful guides and not as nagging
annoyances.

Editing: program first aid
You've just seen that you have to be careful when you enter a computer
program to avoid introducing a bug, or error. Many bugs are the result of
simple typing errors; you can avoid a lot of debugging later by checking
your typing as you go along.

Retyping a whole line every time you make a simple typing error gets
tiresome very quickly. Your Apple has some built-in features to make
debugging easier.

Type the following line, but don't press Return yet:

10 PRINT K "LOOK OUT, YOU BUG"l -----Don'tpressReturnyet!

That K between the PRINT instruction and the message is going to cause
problems. You could re-type the whole line, but if you had to do that
every time you made an error, you'd never get anything done. Instead,
locate the four arrow keys in the lower-right corner of your keyboard.
Then do this:

1. Press the Left-Arrow key until the cursor is directly over the offending
K.

2. Press the Space bar once to erase the K (don't use the Delete key; it
won't work with Applesoft).

3. Using the Right-Arrow key, move the cursor until it is to the right of the
last quotation mark in the line. (If you press Return in the middle of the
line, you'll lose everything from that point to the line's end.)

4. Now check and make sure your line is correct.

Your line should look like this:

10 PRINT "LOOK OUT, YOU BUG"I

Now you can press Return and run the program; it'll work fine.

4 Getting Started

•:• The origins of bug: Back in the old days, computers used vacuum tubes, had a
million miles of wires, and required large, air-conditioned rooms to keep them
working. Computer folklore has it that one day a moth got into the computer
room and flew into the computer. The moth was fried to a crisp, but it didn't die
alone-its demise brought the computer to a dead stop. After searching high and
low to find what caused the computer to "crash," a programmer found the moth's
remains and announced (with no regard for genus or phylum), "Hey. There's a
bug in the computer." The rest is history.

Summary and review
In this first session, you learned how to make way for new programs with
NEW, how to execute programs with .RUN, and how to put messages on the
screen with PRINT. You saw how programs use line numbers to arrange
the sequence of instructions. Finally, you learned a few things about bugs
and how to get rid of them.

Before you go on to the next session, experiment with the PRINT
instruction. Write a five-line program; then change the line numbers by
retyping the lines (making the last line the first one, for example) to see
what happens. And don't be afraid to make mistakes-nobody's keeping
score!

Summary and review 5

Session 2

Arithmetic and Variables

You don't have to know a lot about arithmetic to learn to program your
Apple computer. But most programs require arithmetic functions to make
them work. (For example, in a checkbook balancing program you might
want to subtract the amount of each check that you write from the account
balance.) In this session, you'll learn the basics of computer arithmetic.
You'll also read about variables, the storage areas in the computer's
memory that hold values. Finally, you'll learn the rules for giving names to
variables to make them easier to handle-and then you'll be encouraged to
break the rules to see what happens.

Arithmetic
You learned in the first session that your Apple displays anything enclosed
in quotation marks after the PRINT instruction. To do arithmetic, use the
PRINT instruction without quotation marks.

For example, type this program and run it:

NEW
10 PRINT "5 + 5"
2 0 PRINT 5 + 5

RUN
5 + 5 ------------ Line 10 printed exactly what was inside the quotation marks.

1 o Line 20 printed the sum of the two numbers.

In the first line, you told your Apple to print the phrase 5 + 5. But in the
second line, you said, "Add the numbers 5 plus 5, and show the answer on
th e screen. "

As you might expect, your Apple can do more than just add. In fact, it can
do some extremely complex math. But in this tutorial, you'll stick to the
basics: addition, subtraction, multiplication, and division. Here 's a chart
that shows the symbols (called operators) your computer uses to do simple
arithmetic:

8 Arithmetic and Variables

Operator

+

•
I

Action

add

subtract

multiply

divide

The addition and subtraction operators are the same ones you've always
used. You've probably seen the division operator before, used to express
a fraction (as in 7 /8). The only one that looks a little different is the
multiplication operator; it's an asterisk (*) instead of an X. Many
programmers use the letter Xto represent some unknown value, so
somebody decided to use the asterisk (which is like an X with a horizontal
line through its center) instead.

Here's a sample program. Type it; but before you run it, predict what the
answers will be:

PRINT 4 + 51
PRINT 7.56 - 4. 4 4
PRINT 4 • 5

PRINT 4 . 6 I 2
PRINT 11 + 12 - 13 + 14
PR INT 12 I 3 + 4

Line 20 shows you that your computer can handle fractions-you just need
to express them in a way your computer can understand. For example, if
you mean to tell your computer to determine the sum of two and one-half
plus three by typing this:

PRINT 2 1/2 + 3

you'll get an answer you hadn't counted on. Your computer will display
13.5 instead of 5.5. It interprets 2 1/2 + 3 as "divide the number 21 by 2;
take that answer and add 3 to it." Spaces between numbers mean nothing
to your electronic friend.

If you worked out all of the problems in your head before you ran the
program, the last answer may have been a surprise:

70 PRINT 10 • 2 +BI 2---------TheanS\Nerls24.notl4!

The result of the calculations is based on precedence Precedence is the
order in which your computer does mathematical operations.

Arithmetic 9

Precedence: the order of calculations
In general, your Apple does calculations from left to right. But all
multiplication and division happens before addition and subtraction. Step
through the calculations in line 70 to see how precedence works.

Calculation: 10 • 2 + 8 I 2

Step 1: 10 • 2 = 20

Step 2: 8 I 2 = 4

Step 3: 20 + 4 = 24

Use parentheses to change precedence
Sometimes you'll need to re-order precedence so that you can first do
addition and subtraction and then do multiplication and division. For
example, what if you meant

PRINT 18 + 4 I 2

to mean you wanted to add 18 and 4 first, and then divide the sum by 2?
Look at the following little program to see how to do it:

NEW
10 PRINT 18 + 4 I 2----------Thls comes out 20 ...
20 PRINT < 18 + 4) I 2 ... but this comes out 11.

Line 10 first handles the division, then adds the result to 18. Line 20 re­
orders precedence by enclosing the sum within parentheses. Parentheses
change the order of precedence. Whatever you type within parentheses is
solved first, again from left to right and multiplication/division before
addition/subtraction.

If you need to, you can embed parentheses within other parentheses to
show precedence in more complex situations. Just remember to go from
the innermost set of parentheses and move outward.

Take a look at this next program and see if you can guess what the results
will be before you run it:

l O Arithmetic and Variables

10 PRINT (7-3) • 2
20 PRINT 3 • ((10 - 6) I 2)
30 PRINT ((4 - 3) I (9 + 2)) • 2
40 PRINT (((1 + 2) • (2-1)) + 11) I 10

Now run the program and see if you were right.

Whenever you start using a lot of parentheses, check to make sure that the
number of left parentheses matches the number of right parentheses. If
the totals of left and right parentheses are different, you'll get a syntax error
message.

•:• Pretend you're the computer: Every time you write a program or a section of a
program, run it in your head before you run it in your computer. The more you
"play computer," the more you'll understand how your computer operates. As
that happens, you'll automatically type instructions the way the computer needs
to see them; you'll soon find that you get far fewer error messages. Try it for a
while and see what happens.

Experiment with your own arithmetic programs. Try mixing the
precedence up. Mix in some phrases to label what you're doing. For
example:

NEW
10 PRINT "The sum of 12 plus 20, divided by the difference between 5 and 3.5, is "
2 0 PRINT (12 + 20) I (5 - 3.5)

•:• About unsightly "nmover" lines: If your computer is set to display 40 columns on
your screen, line lO's quotation ran over the edge of the screen and wrapped to
the next line. The word divided was split in the process. As you go along you'll
pick up little tricks to avoid such unsightly split words; for the time being, try to
ignore them-your computer does.

So now you know how to use your Apple to do arithmetic. And you can
use it as you would a calculator (although using a calculator is probably
quicker and easier). But the simple arithmetic functions you just learned
become much more powerful when you use them with variables.

Variables
Variables are symbols for values. They're called variables because their
values can change or vary. Variables look like phrases you forgot to put in
quotation marks:

Variables 11

NEW
10 PR I NT " HELLO"
20 PRINT HE LLO
RU N
HELLO------------- Line 10 prints this.
0--------------- Line 20's work.

In this program, the first HELLO is a phrase for the computer to print just
as it is. The second HELLO is a variable whose value happens to be zero.
You give a value to a variable by using the equal sign(=).

Add these lines to the HELLO program and run it:

30 HELLO = 128
4 0 PRINT HELLO ---------This will show up as 128!
RU N
HELLO
0
12 8-------------- New value for variable HELLO assigned in line 30.

You've just assigned the value 128 to a variable called HELLO. Think of a
variable as a temporary storage box. Whatever you put into the box stays
there until you replace it with something else. Add these two lines to your
program and run it again:

50 HELLO = 350 0
60 PRINT HELLO
RUN

You can do math with variables . Try the following program:

NEW
10 A = 15
20 B = 95
30 PRINT A + B

Variables can hold the result of calculations on other variables as well as on
numbers . Type the following program and see if you can guess the results
before you run it:

10 LOW = 5
20 HIGH = 9
30 SUM= LOW + HI GH
40 PRINT SUM

The sum of variables LOW and HIGH ends up in the third variable, SUM.

Try out the following program to see the various combinations of numbers
and variables you can get.

12 Arithmetic and Variables

10 w = 14.S
20 x = 6.5
30 PRINT (W + X) . 2
40 y = w - x + 3
50 PRINT Y
60 z = 3 • y - 2
70 PRINT Z

Naming variables
Applesoft imposes a few restrictions on naming variables. Here's a list:

• A variable name must begin with a letter.

• Characters after the first one can be a mixture of letters and digits (no
symbols).

• Certain letter combinations (called reserved words) have special meaning
to Applesoft and can't be used in any part of a variable name. (You'll
learn more about this rule in Session 3.)

• A name can be up to 238 characters long, but the computer recognizes
only the first two. (The others are to remind you what the variable
stands for.)

When you write a very short and simple program, using single letter
variables is a safe way to make sure a variable name doesn't conflict with
another variable. (Your computer sees SUM and SUNDAY as the same
variable because of the last rule in the chart.) But when you begin writing
longer programs, it really helps to have variable names that describe what's
going on.

For example, if you're calculating the area of a circle, you'll need the value
of pi (7t) in your program. You could have the variable X hold the value of
pi (3.141592). It makes more sense, though, to give variables more
meaningful names:

NEW
10 PI = 3 . 141592
20 RADIUS = 5
30 AREA =P I • RADIUS • RADIUS------Math:A=1tR2

40 PRINT AREA

Descriptive variable names make it easy for you to see what the program is
doing when you read your code (a synonym for program).

Variables 13

•!• Store only numbers tn numeric variables: The kinds of variables you're learning
about now are called numeric variables. That means that you can use them only
to hold the value of numbers. In Session 3, you'll learn about string variables,
which hold anything-numbers, letters, special characters. If you get an error
message like TYPE MISMATCH, you've probably tried to give a non-numeric
value to a numeric variable.

Break a few rules
One of the best ways to understand a programming rule is to break it.
Break every variable rule there is and see what happens. Go
ahead-question authority. Here are some examples:

NEW
10 PRINT lV
RUN
10

Your computer thought you wanted it to print a 1 and then the value of the
variable V. (All variable names start with a letter.) Variables that you
haven't assigned a value to automatically hold the value O; a 1 with a 0 next to
it is JQ

10 PRINT = 1
RUN
?SYNTAX ERROR IN 10

PRINT is a reserved word; you can't use it as a variable.

10 MIMI = 5
20 MIAMI = 8
3 0 PRI NT MIMI
RUN
8

Only the first two characters of a variable name really count. As far as your
Apple is concerned, you assigned the value 5 to MI in line 10; but you
changed it to 8 in line 20.

Finding variable names that are both meaningful and legal can be a bit
tricky at first. So when you run into a program bug, thefir.s-t thing you
should do is check your variable names.

14 Arithmetic and Variables

Summary and review
This session taught you how to use computer arithmetic and variables. You
learned the rules of precedence and how to program your computer to
calculate simple and then somewhat complicated arithmetic problems.
You found out that variables are storage areas used to hold values and that
the names you give variables should reflect the kinds of values they hold.
And you saw that, like everything else in programming, there are rules for
naming variables (and that breaking those rules is a great way to learn
them).

Summary and review 15

Session 3

The Outside World

Up to now, all the information that went into the computer got there
through your program lines. When you wanted a variable to hold some
value, you used an assignment instruction (as in NUMBER = 23, so called
because it assigns the value 23 to the variable NUMBER). You, the programmer,
gave the program the variable's value. In this session, you'll learn how to
use INPUT, an instruction that lets the program get a variable's value from
the person using your program. You'll read how to construct meaningful
prompting messages so your user will know what information the program
needs. And you'll learn about string variables, which let you assign letters
and special characters (not just numbers) to variables.

You'll also learn the difference between immediate execution and deferred
execution, and you'll encounter new instructions that let you clear the
screen (HOME) and get an updated listing of your program (LIST).

INPUT
The INPUT instruction is at the heart of interactive programming­
programming that lets the computer and a human hold a conversation.
INPUT lets you give information to your program while it's running. It
makes the program wait until you (or the person using your program)
types something and presses Return.

Type and run the following program: when a question mark (the INPUT
prompt) appears on the screen, type a number and press Return:

NEW

10 INPUT A
20 PRINT A • 5

Your Apple computer prints whatever number you typed after the
question mark. If you typed 3, your screen would look like this:

? 3 ------------Your computer supplies the question mark automatically.
15

It's just as if you had typed A= 3 as a program line. Whatever you type in
response to an INPUT prompt gets assigned to the input variable (a variable
whose value is assigned by the user, as opposed to one whose value is
assigned by the programmer).

18 The Outside World

Prompts
The question mark prompts you to type something. You knew what to
type (a number) because this tutorial told you. But people using your
program would have a hard time knowing what to do if all they had to go
on was what appeared on the screen; a question mark in itself doesn't say
much.

Applesoft lets you use descriptive prompts to solve this problem.
Prompts tell a computer user what to do next. You can use either of two
ways to show what the program wants. First, you can print a line that says
what to do; then use an INPUT line.

Type this program and run it:

NEW

10 PRINT "I had a tough night. What year is this?"
20 INPUT Year

Now when you run the program, the message on the screen lets you know
that you need to type the year.

You can also use the INPUT instruction itself to print a prompt. A prompt
w ith INPUT works almost like a prompt with PRINT, except that the
prompt appears on the same line as the INPUf instruction:

NEW ~INPUT and prompt.
10 INP UT "I ha d a t ough night . What y e ar is this? "; Year~
2 o PRINT "Oh, great. I thought it was "; Year + 1 New stuff here!
30 PRINT "and I missed Christmas."

(Be sure to give the computer an answer when it prompts you for one.)
The semicolon between the quotation mark and the variable name in line 10
is important; you have to include a semicolon when you're using a
prompting phrase with an INPUT instruction. Note that when you use a
semicolon after an INPUT instruction, your Apple omits the question mark
prompt.

•:• Some tips on using PRINT: Line 20 has implications you can investigate on your
own. To get you started, note that:

1. There's a semicolon after the final quotation mark-the semicolon tells BASIC
to show the value of the variable on the same line as the quotation.

2. Your Apple does a little arithmetic on the variable Year.

Here's a program that shows several examples of self-prompting INPUT
lines:

Prompts 19

NEW
10
20
30

40
50
60

PRINT
PRINT
INPUT

I NPUT
INPUT
INPUT

"TRIVIA PROMPT GAME"

"How many cards are in a deck? "; Cards

"How many U.S. congresspersons are there? "; CP
"How many keys are there on your keyboard? "; Keys
"How many days are in a leap year? "; Leap

•!• Illegal names and syntax errors: The trivia program uses descriptive variable
names in all lines except line 40. The variable name CP is not very descriptive,
but both Congress and Persons contain the reserved word ON. (See the list in
Appendix B.) When you get a syntax error in your program and you don't know
why, try changing the variable names.

More editing: adding lines
Sometimes you have to add lines to your program. If the new lines belong
at the end of the program, you just type a line number larger than the last
line number in the old program and start typing. But what happens if you
need to add a line in the middle? Nothing to it. All you have to do is type
a line number that's between the numbers that already exist.

For example, suppose you have the following program, and you want to
include a line between lines 10 and 20:

NEW
10 PRINT "Re me mber t o"
20 PRINT "the dog"

You want to remember to feed the dog. All you do is add the following
line to your program:

15 PRINT " feed"

Go ahead and run the program. You'll see that everything turned out in the
right order.

•!• Leave internals between line numbers: All the sample programs you've seen in
this tutorial have line numbers spaced 10 apart. If the current program had been
numbered 1, 2 instead of 10, 20, you wouldn't have had room to insert the new
line, and you would have had to retype the whole program.

Cleaning up with HOME
Your screen gets cluttered after you've typed and run a few programs. The
HOME instruction clears the screen and places the cursor at the upper-left

20 The Outside World

corner (the cursor's beginning, or home, position). Each time the
program encounters HOME, it clears the screen and homes the cursor:

NEW
10 HOME
20 INPUT "HOW MANY POUNDS ARE IN A KILOGRAM? "; LB
30 HOME
40 INPUT "HOW OLD IS THE PRESIDENT? "; PRES
;_;:_~:~

The screen cleared with each new question. That way there's no confusion
about what the program expects, and there's no clutter from other
programs.

You can also use HOME without a line number whenever you feel like doing
some light housecleaning. Just type HOME and press Return.

Try it now:

HOME

HOME clears the screen-it doesn't clear memory. HOME just erases the
junk cluttering your display. It has absolutely no impact on memory.
(Don't confuse it with NEW.) But after you use HOME to clear your screen,
you'll need a way to see your program lines again.

LIST
Type LIST and press return to see your program again. Try it now.

LIST

As your programs get longer, you'll use LIST more and more. Type the
following program to test the different ways to use LIST:

NEW
10
20
30
40
50
60

HOME
PRINT
PRINT
PRINT
PRINT
PRINT

"And Maud Pritchard"
"waddled the bible-black path"
"to the boat-bobbing sea"
"with nary a mind"
"for Mr. Pritchard, dead as biscuits."

First, run the program; then list it. Once you've listed your program, try
the following variations of the LIST command to see what happens.

LIST 40 ----------------Lists line 40 only.

LIST 40 ----------------LIST_ 40 Listsfromline40toendofprogram.

LI ST 2 o - 4 o --------------~Lists from beginning to line 40.

Lists from line 20 to line 40.

LIST 21

With the small programs you've written so far, you won't need all these
variations in the LIST command. But later, when your programs are so
large they roll off the top of your screen, you'll want to list small program
segments.

String variables
In Session 2, you learned how to use variables with numbers. You can also
use variables with text. Variables that hold text are called string variables.
String variable names always end with a dollar sign($), and you define them
(that is, give them values) in nearly the same way as numeric variables:

NEW
10 HOME
20 Aunt$= " Aunt Liz zy"
3 0 PRINT Au nt$

When you run this program, the words Aunt Lizzy appear on the screen.
Line 30 works the same as

PRINT "Aunt Lizzy"

You can put just about anything into a string variable. Unlike numeric
variables, which accept only numbers, string variables can hold letters,
numbers, symbols-even punctuation:

NEW

10 HOME

20 GARBAGE$= "All o f this junk - > %43 $," ! :;"

3 0 PRINT GARBAGE$

Your computer printed everything between the quotation marks in line 20.
It's important to remember that numbers are not treated as numbers when
they are in string variables. They're treated as text-just symbols, a string
(get it?) of characters without meaning to the computer.

Run this next program to see numbers treated at text:

10 HOME
2 0 A$ = "1 0 "
3 0 B$ = " 2 0"
40 PRINT A$ + B$

Instead of getting 30, you got 1020. The plus sign (+) doesn't "add" the
string variables. (How do you add letters?) It just strings them together.
In computer terms, it concatenates them.

22 The Outside World

You can also use string variables with INPUT. You use prompts with a
string variable INPUT just as you do with a numeric variable INPUT. This
next program mixes both kinds of variables:

10 HOME
20 INPUT "What's your name? "; NAME$
30 INPUT "Type your age: "; NUM

40 HOME Note the semicolon.
50 PRINT NAME$; ------------
60 PRINT " is "; There's a space before the i and after the S.
70 PRINT NUM;
80 PRINT " years old."

Just to see what happens, type some letters when your Apple asks for
numbers. (For example, type eighteen instead of the number 18.)

As soon as you press Return, you get this error message:

?REENTER

That just means your program expected a number and got something else.
Do as it says-re-enter a number (your computer wouldn't lie to you), and
everything will work fine.

Variables rules recap
In case you've forgotten, here are the rules for naming variables. The last
one applies only to string variables:

• A variable name must begin with a letter.

• Characters after the first one can be letters or digits.

• A name can be up to 238 characters long, but the computer recognizes
only the first two. (The others are to remind you what the variable
stands for.)

• Certain letter combinations (called reserved words) can't be used in any
part of a variable name. See Appendix B for a list.

• All string variable names end with $.

Debugging
Murphy's law, "If anything can go wrong, it will," applies doubly to
programming. (Lubarsky's Law of Cybernetic Entomology applies equally:
"There's always one more bug"; but that's for a more advanced tutorial.)

Debugging 23

Experienced hackers (another term for programmers) and beginners alike
make all kinds of little errors while programming. Debugging a program
(that is, ruthlessly tracking down and exterminating bugs) is a normal part
of creating a computer program; more often than not, it's a major part.
That's why your computer has error messages.

Knowing the difference between immediate and deferred execution is
helpful in debugging programs. When you type RUN or NEW or L I ST without
a line number, the computer does what you want as soon as you press
Return. This is known as immediate execution. When you write a program
wi th line numbers, the computer defers execution until you run it. This is
called deferred execution. Immediate execution is extremely useful in
debugging programs.

For example, type and run the following program:

NEW

10 HOME

20 MONEYS= " $1 , 000 "

30 PRINT MONEYS

You get ?SYN TAX ERROR IN 20 instead of the $1,000 you expected. List line
20, and you will be in for a surprise:

20 MONEY$ = "$1 .000 "

What happened to M ON EYS? It's all broken up. Type:

MONEY S = " $1 . 0 00 "

As soon as you press Return, you get a syntax error. You have a reserved
word (ON) embedded in your variable name. In your program listing, you
can see that ON has been separated from M ON EYS in lines 20 and 30. You
can rewrite your program with another variable name, but first test the
alternate name by using immediate execution. Try the following:

BUCK$ = " $ 1.000"

There was no error message this time. That means BUCKS is acceptable as a
variable name. In this case, changing the program takes only a few
seconds; you've used MONEYS only once. But consider a situation in which
you've typed a much longer program, using MONEYS 25 or 30 times-it would
take quite a bit of time to change each instance of MONEYS to BUCKS . It's a lot
quicker testing out possible errors by using immediate execution than re­
writing your program every time you encounter an error.

The trick to successful debugging is isolating the problem. Some error
messages give you the line number where your computer detects the
problem. This helps you zero in on the problem. Test the possible
problem from the immediate mode as you saw in the example with MONEYS
and BUCKS . Correct the error in the program, and re-run it to see if more

24 The Outside World

errors occur. If no more errors happen, then your debugging
succeeded-at least as far as variable names are concerned.

You'll find more uses for immediate execution as you go along.
Experimentation is the key. Try everything first with immediate execution;
you'll be in for some pleasant surprises.

Summary and review
In this session, you learned that you can get information from the user with
the INPUT instruction while your programs are running. Be sure to use
descriptive prompts with INPUT; that way people who use your programs
can know what they're supposed to type. Descriptive prompts are to the
users of your programs what descriptive variable names are to you, the
programmer.

You also learned about string variables. You saw that they work and look
much like numeric variables, except that string variables end with $, and
their values are surrounded by quotation marks in a program line.

The HOME instruction clears the screen for you. LIST lets you see all or
some of the lines of the program in memory to make program debugging
easier.

You also learned that you can use many programming instructions with
immediate execution to help you debug programs.

Summary and review 25

Session 4

Using the Disk and Other
Devices

As you write longer and better programs, you'll want to start saving them
to use again. This session explains how to store programs onto disks and
how to get them back again.

You'll learn about three different kinds of memory (RAM, ROM, disk), with
emphasis on disk memory. You'll see how to store a program onto a disk
with SA VE, retrieve the program with LOAD, and see a list of all the
programs on a disk with CAT. You'll learn how to get rid of outdated
programs on a disk by using DELETE.

You'll also learn how to use PR#l to get a version of your program on
paper instead of on the screen, and how to use PR#O to use the screen
again. And you'll end the session with a review of everything you've
learned so far.

Computer memory
RAM stands for Random-Access Memory. RAM is temporary. When you
first turn on your computer, this memory has nothing meaningful in it.
When you write a program or tell your computer to retrieve a program
stored on a disk, that information goes into RAM. When you turn off your
computer, all of the information in RAM evaporates.

ROM is Read-OnlyMemory. It's a kind of memory that holds information
permanently. The Applesoft BASIC language is stored in this kind of
memory; when you turn your computer off, the language stays in ROM (but
not your program). Nothing that you type gets stored in this kind of
memory.

A disk is what you save programs on. Disk drives (the devices that disks go
into) work a lot like tape recorders. With a tape recorder, you talk into
the microphone, and your voice is recorded on magnetic tape. Then you
rewind the tape and listen to your voice. Your computer works the same
way, except that instead of using tape recorders to save what's in RAM onto
tape, it uses disk drives to save information onto disks. Once you've got a
program on disk, you can "play it back" again and again.

You don't have to worry about the technical details of RAM, ROM, and
disks. I3ut you'll save yourself a lot of grief if you remember that when you
turn off your computer, everything in RAM disappears into electronic
oblivion.

28 Using the Disk and Other Devices

Files and catalogs
Most well-organized people put written records in files so they can find the
records again. So too with computer records. Programs stored on disk are
also called files. There are several other kinds of files, but the only kind
you have to know about for now are program .files-the name given to
programs stored on disks.

Making a list or catalog of what files are stored in a file cabinet makes it
easier to locate a file when you need it. Essentially, that's what your
computer does when you save a program on a disk. You store your
program by using the SA VE command, and the name of the program is
placed in a catalog. When you want to use a program, you look it up in the
disk's catalog with the CAT command to make sure it's there; then you
retrieve it by using the LOAD command.

•!• Commands versus instructions-a matter of terminology: That last paragraph
used the term command several times. A command is like an instruction in that it
tells the computer to do something. The difference between a command and an
instruction lies almost entirely in when the computer does what you want.
Essentially, a command is an order that the computer executes immediately; an
instruction is an order whose execution is deferred. It's just a matter of
terminology.

How to save programs
Storing a program onto a disk is the easiest thing in the world. You issue
the SA VE command, giving your program a name you can use later to get it
back from the disk.

To get some practice, first type in this program:

NEW

10 PRI NT "This is my very first saved p rog r a m."
20 PRI NT " I 'm v e ry proud of i t "
30 PRINT "(or I will be, i f I can g e t it bac k)."

Now you need to think of a name. Here are the rules for naming a
program.

• A program's name can be up to fifteen characters long.

• The name must begin with a letter.

How to save programs 29

• You can use letters, digits, and periods in the filename, but you can't use
any other characters, and you can't include any spaces. You can use
both uppercase and lowercase characters, but the computer converts all
letters to uppercase.

• All filenames on a given disk must be unique. But alJ, characters in the
name count, not just the first two, and you don't have to worry about
reserved words. So coming up with different filenames shouldn't be
much of a problem.

• The name should reflect what the program does.

Here are some legal filenames:

CHECKBOOK

ADDING .PROGRAM

AH. lANDAH.2

NOT.4.SALE

These names, though, are illegal:

Illegal Name

lONE

THIS.PROGRAM!

. POINT

Problem

Begins with a number.

Exclamation mark is illegal.

Begins with a period .

A.REALL Y.TRULY.NIITY.PROGRAM Too, too, long.

GREAT STUFF There's a space.

(Many people use periods in filenames where they'd use spaces if they
could.)

Save your program onto a disk now. You can use whatever legal name you
want; MY.FIRST.FILE seems like an appropriate one.

Type this line and press Return:

SAVE MY.FIRST.FILE

The disk whirs and kerchunks a bit. When it stops, a copy of your
program is safely stored on the disk. Note that word-copy. Storing a
program on disk doesn't have any effect on what's in the computer's
memory.

Type LIST and press Return; you'll see that the program is still there.

30 Using the Disk and Other Devices

Reading the catalog and retrieving a program
Once you've saved your program to the disk, type NEW and press Return.
Now you know for sure that there's nothing in memory. (Type LIST and
press Return to see for yourself.)

To look at the files on your disk, use the CAT command. You'll get a list of
all the files on the disk.

Type this command and press Return:

CAT

Assuming there are no other programs on the disk, your screen will look
like this:

]CAT

/PRACTICE

TYPE BLOCKS t1DDIFIED

t1Y.FIRST.FILE $08 33 <NO DATE>

BLOCKS FREE 240 BLOCKS USED: 40

(Of course, your screen will look different if the disk already has other
programs on it.) The program MY.FIRST.FILE is now in the catalog. (For
information on what the rest of the display means, see the manual that
came with your computer.) The next step is to retrieve the program. To
do that you need a new command, LOAD.

Type this command and press Return:

LOAD MY.FIRST.FILE

Reading the catalog and retrieving a program 31

You'll hear your disk drive whir a second, and then the prompt and cursor
will reappear. That means your program was successfully loaded into
memory.

To make sure it's the program you saved, list it:

LIST

Your program appears, just as it was when you saved it.

•:• LOAD does a NEW: When you load a program, your computer first clears its
memory of any program that might already be there. This means you don't have
to worry about two programs being mixed together. (It's possible to combine two
programs, but the technique is too advanced for this tutorial.) Think of LOAD as
having an automatic NEW attached to it.

Cleaning up
If you're really careful when you write programs, you'll save different
versions as you go along. For example, you might have saved these
programs on your disk:

STAMPS.Vl
STAMPS.V2
STAMPS.V3

If you know for sure that the last version of your program, STAMPS.V3, is
the only one you plan to use, you might as well get rid of the other versions
and free up room on your disk. You delete files by using the DELETE
commana.

To delete STAMPS.Vl, type

DELETE STAMPS . Vl ------------ Press Return .

You'll hear the disk whir, and STAMPS.Vl will be just a memory (human,
not computer). Just think of DELETE as the opposite of SA VE, and use the
same format.

•:• DELETE's not reversible: DELETE is forever. Once you delete a program from
the disk, it's gone. Be sure that you want to get rid of a program before you use
DELETE.

32 Using the Disk and Other Devices

For printer owners: printing your listings
So far, you've sent your program to the screen and to the disk. You can
also send your program (and anything else you type) to the printer.

Printing out a program, especially a long one, is extremely helpful in
program debugging; your experience will show you how very true this is.

To list a program on your printer, follow these steps:

1. Make sure your printer is properly connected to the computer.

2. Check that you have paper properly loaded.

3. Be sure the printer is turned on.

4. Type PR#l and press Return.

(If you don't follow any one of the first three instructions, your computer
will appear to be stuck.) The PR#l command makes everything that would
go to the screen go to the printer. If you type LIST after you've typed a
PR#l command, your printer will clank out the listing (unless you've typed
LIST incorrectly-in which case the syntax error message gets printed).

To see the computer's output on your screen again and to stop using your
printer, type this:

PR#O

and press Return. The command will appear on the printed page; but after
that, subsequent commands and listings will appear on the screen instead.

Bugs can be tough to find in longer programs, especially when your listing
is so long that it scrolls off the screen. Printing out your listings can save a
great deal of debugging time.

Type this program and try listing it on your printer:

NEW

10 HOME

20 PRINT

30 PRINT

40 PRINT

PR#l

LIST

"This program will be listed to my printer."
"If there's a bug here, the printer"
"will help me track it down."

Your printer gives you a hard copy listing of the program.

Before you turn off your printer with PR#O, run the program to see what
happens. Then type PR#O to get your BASIC prompt 0) back on your
display screen.

For printer owners: printing your listings 33

Using what you've learned
You've had less to learn in this session than in the three previous ones.
Use your remaining BASIC study time to write some programs that use all
the instructions and operators you've learned so far. Here's a list to jog
your memory:

Instructions

HOME

Operators

+

I

Commands

CAT

LIST

PR#O

Concepts

INPUT

(

DELETE

LOAD

RUN

Immediate and Deferred Execution

Meaningful Names

Precedence

String Variables

Summary and review

PRINT

)

NEW

PR#l

SAVE

Line Numbers with Intervals

Numeric Variables

Prompting Messages

In this session, you learned how to store programs onto disks by using the
SAVE command, and how to get them back by using LOAD. You learned
how to name programs, and which characters are legal in a name and which
ones aren't. You saw that CAT gives you a list of all the files on your disk,
and that if you use PR#l, whatever ordinarily goes to the screen goes to the
printer. (PR#O sends information to the screen again.)

34 Using the Disk and Other Devices

Session 5

Loops and Conditions

In the first few sessions, you learned the rudiments of BASIC
programming. Now it's time to get down to some more advanced stuff.
In this session you're going to learn about three very powerful principles:
loops, relationals, and conditionals. You'll also read about some BASIC
short cuts that make programming easier, and you'll learn some other
helpful instructions.

Loops
To loop is to go over the same part of a program more than once. For
example, suppose you want to get ten names with INPUT and print them
one after another onto the screen. It would be a lot easier to repeat the
part of the program with the INPUT instruction than to write ten separate
lines with INPUT:

NEW
10 HOME
20 INPUT "Gimme a name: "; NAME$
30 PRINT NAME$
40 ----------------How do you get back to line 20?

What you need is some instruction that lets your program loop back to line
20 to get another name. That instruction is GOTO.

GOTO
The GOTO instruction directs the program to go to any line you name.
This program clears the screen, then skips to (or branches to) line 40
instead of going to line 30:

NEW
10 HOME
20 GOTO 40
30 PRINT "Hey! I thought I was next! "-- This never gets printed!
40 PRINT "I'm the only line you'll see!"

Here's another example. Type the first program of this session, but this
time type

40 GOTO 20

36 Loops and Conditions

for the last line. Then list the program. It should look like this:

10 HOME
20 INPUT "Gimme a name: "; NAME$
30 PRINT NAME$
40 GOTO 20

This program repeatedly asks for a name and then prints out what you
type. The program will go on doing this forever as long as somebody
keeps typing in names (or until somebody pulls the plug); every time the
program reaches line 40, it goes back to line 20.

•!• Infinite loops: What you've got here is an infinite loop. Sometimes, infinite
loops can be helpful-this isn't one of those times. To get out of the loop before
you run out of names (or patience), press the keys marked Control and C at the
same time; release them and press Return. That's called pressing Control-C;
you'll run across this term often if you read computer books and magazines.
When you press Control-C, your computer will announce:

BREAK IN 20

The message means that you "broke into" the program at line 20. When a
program gets stuck (or hangs), sometimes the only way to regain control is with
Control-C.

This program solves the problem of getting lots of names without retyping
INPUT lines again and again. But it's out of control. You need a way (other
than Control-C) of getting the program to stop looping when you've had
enough.

Conditional branching with If ... THEN
BASIC has a two-part instruction called IF ... THEN. It gives your program
the power to make decisions-which, as it turns out, is just what you need
to solve the infinite loop problem. The general format of IF ... THEN looks
like this:

IF <something is true> THEN <perform some action>

An IF.. .THEN instruction decides whether or not something is true. If what
you say in the first part between the words IF and IBEN(called the
condition) is true, then your computer does whatever you put after THEN.
If the condition is not true, then the program ignores everything after
THEN and drops to the next line.

To see this in action, add two lines to your infinitely looping program:

25 IF NAME$ = "enough" THEN GOTO 50
50 PRINT "And that ends the name list."

Conditional branching with IF .. .THEN 37

Here's the whole listing:

10 HOME
20 INPUT "Gimme a name: "; NAME$
25 IF NAME$ = "enough" THEN GOTO 50
30 PRINT NAME$
40 GOTO 20
50 PRINT "And that ends the name list . "

Run the program now; after you've typed a few names, type enough and the
program ends.

Building on the model
Going by the model IF <something is trne> THEN <peiform some action>,
in the previous example the something-that's-true (the condition) isNA$ =

"enough." When NA$ was anything except "enough," the program went on
looping; when it was enough, the program branched to the final line. The
branching was the perform-some-action part.

•!• Start a saving plan: As you type in your programs, you should get into the habit of
saving them to your disk before you run them. Then, save them often as you
develop and change them-once every ten minutes or so will do nicely. There'll
be situations when even Control-C won't get you out of trouble (like, for instance,
when your little brother playfully flicks off the power switch). If you save the
program often, you won't have to recreate and retype your latest refinements.

Relational operators
Here are some more examples of IF ... THEN instructions. Pay careful
attention to the conditions; you'll see some symbols you haven't seen
before:

IF NA$ = "QUIT" THEN GOTO 100 --<>means "not the same as".
IF A$ <>"APPLE" THEN PRINT "YOU LOSE!"
IF SUM > 10 THEN x = 50 > means "greater than".
IF COUNT< 100 THEN GOTO 20 --------------

< means "less than".

Those little angle brackets are called relational operators. They describe a
relation that exists between two things. Here's a chart that shows all the
relational operators and what they mean:

38 Loops and Conditions

Operator Meaning

> greater than

< less than

equal to

<> not equal to

>= not less than

<= not greater than

The next two programs give you some examples of what you can do with
relationals, GOTO and IF .. . THEN instructions. They also present you with
some challenges, teach you a new instruction or two, and give you a few
BASIC short cuts.

Comparing Values: This program asks you for two numbers, then tells you
which number is the lower one. The program has a few surprises in it to
keep you from getting bored.

First, type the program. Then see if you can figure out what's going on
before you run it. Finally, run it and see if you were right.

NEW
10 HOME
15 PRINT "To end the program, type a O for the fi rst number ."
20 INPUT "Enter the fi rst number: "; Nl
25 IF Nl = 0 THEN END
30 INPUT "Enter the second number: "; N2
35 IF Nl > N2 THEN GOTO 100
40 IF Nl < N2 THEN GOTO 200
45 PRINT "Those numbers are the same!"--Howdoesthiswork???

50 GOTO 20
100 PRINT N2; " is lower than "; Nl
110 GOTO 20
200 PRINT Nl;" is lower than "; N2
210 GOTO 20

Here are some questions for you to consider before reading further:

1. There's a new instruction in line 25-END. What does it do?

2. Line 45 will print its message only if both numbers you type for lines 20
and 30 are the same. Why?

How The Program Works: Line 15 lets you know what to do to stop the
program without using Control-C. The END instruction in line 25 does the
work of stopping the program-but only if you type a 0. Line 45 is

Relational operators 39

executed only when values for Nl and N2 are the same. To see why, look
at the two previous lines. Line 35 goes to one part of the program if N2's
value is lower than Nl; line 40 goes to another part of the program if the
opposite is true. Being the literal "thinker" that it is, your computer
continues on to the next line (line 45) only if there's no reason not to-in
this case, if both values are the same.

Assigning Variables: This next program shows how IF ... THEN can assign
different values to variables. In this instance, the values are different words.
(They could just as well be numbers.)

Type the program. Before you run it, figure out
1. What are all those question marks for?
2. What's strange about line 80?
3. What's line 80 for, anyway?

Be sure to figure out the challenges before you run this zoologically
questionable program:

NEW
10 HOME
20 ? "1. SWIMS"
30 ? "2. WALKS"
40 ? "3. FLIES"
50 PRINT
60 PRINT "Think of an animal. Then choose a"
65 ? "number that best describes how your"
70 INPUT "animal moves. "; NUMBER
80 IF NUMBER > 3 THEN 10
90 IF NUMBER < 1 THEN 10
100 IF NUMBER = 1 THEN ANIMAL$ ="Fish"
11 0 IF NUMBER = 2 THEN ANIMAL$ "Mammal"
120 IF NUMBER = 3 THEN ANIMAL$ = "Bird"
130 PRINT
200 PRINT "I bet your animal is a "; ANIMAL$

Those question marks are a short-hand way of typing PRINT. Saving four
keystrokes each time you want to use PRINT can save you lots more time
than you think. When you list your program, each question mark will be
converted to PRINT.

Line 80 is peculiar in that it leaves out the word GOTO. It turns out that any
of the following forms work for the GOTO instruction within an IF ... THEN:

IF NUMBER > 3 THEN GOTO 10
IF NUMBER > 3 THEN 10
IF NUMBER > 3 GOTO 10

In other words, you can omit THEN or GOTO-but not both.

40 Loops and Conditions

The purpose of lines 80 and 90 is to set traps to make sure anyone using
the program doesn't put in a number that's beyond the range of choices.
Traps give your users another chance in case they make a mistake (which is
an annoying human tendency).

Use REM for remarks
The REM instruction lets you write notes to yourself about what your
program does, and lets you include the notes in the program. These notes
show up only when you list your program; people can't see them when
they run it.

For example, you can use REM instructions to keep information about the
program handy, or to tell you what the program segment is doing:

100 REM**********************************

110 REM

115 REM

120 REM

125 REM

130 REM

135 REM

140 HOME

1 45 COMMENT$

150 REM

The Great American Computer Program

by Throckmorton Scribble monger

Version 16 . 5

J uly 4, 1987

Clear the screen

= " REM comme nt s don't appear on the screen."

Print a messa ge on the s c reen

155 PRINT COMMENT$

160

REM instructions are reminders for people, not for computers. REM
instructions do nothing to your program. When the program reaches one,
it ignores the REM instruction (and anything after it on the same line) and
goes on to the next line.

•:• Put program name in a REM line: Make the first or second line of your program a
REM line containing the program's name. Then, when you change the program
and want to save the new version onto a disk, you'll always know what name to use.

Practice time
You covered a lot of ground in this session. Before going on, experiment
with what you've learned. Go back and change the example programs.
Try to "break" some programs; find the limits of the instructions you

Practice time 41

learned in this session. Certainly write some programs of your own. Make
mistakes-they're free.

Summary and review
This session showed you how your computer can loop and make decisions
(that is, process information). You use loops to repeat a process several
times. Instead of having to repeat the same line throughout your program,
you can use GOTO to repeat the lines. This saves a lot of time in building
your programs.

The IF ... THEN instruction is your computer's "decision maker." With
IF ... THEN, you can branch to different options and jump out of infinite
loops. You can trap mistakes with IF ... THEN to make sure the person
using your program types information for INPUT instructions within the
program's range.

You learned some short cuts for writing GOTO instructions within
IF ... THEN instructions, and you saw how to use the question mark in place
of PRINT.

Finally, you saw how to use REM to remind yourself what a particular part of
your program does. By using REM throughout your programs, you can
clearly organize your program lines; by marking program segments to
make them easier to find, you make debugging easier.

42 Loops and Conditions

Session 6

Graphics

Up to this point, all you've seen on your Apple computer is text. But you
can also produce some wonderful color graphics. Your computer has
several graphics modes; in this session you'll learn the one called Jow­
resolution graphics. (It's the easiest to use.)

You'll learn the difference between your computer's text and graphic
modes, while learning the GR and TEXT instructions. You'll see how to use
COLOR= to set one of sixteen colors to use with PLOT (for plotting points),
VLIN (for drawing vertical lines) and HLIN (for drawing horizontal lines).

Besides all this, you'll learn the RND instruction for producing random
numbers-which you'll use, in turn, to produce some pretty snazzy
graphics.

Text and graphics
Your computer has separate modes for text and graphics. (A mode is any
of several ways a computer interprets information.)

To get started, you need to know two instructions-one to get into
graphics mode and one to get out. When you turn on your computer, it
automatically goes into text mode. When you type the instruction GR for
graphics, your computer goes into graphics mode.

Type the command

GR

(don't use a line number) and press Return.

Your screen went blank, and the cursor popped up at the bottom of the
screen. The top of the screen, above the cursor, is for graphics; it takes
up 20 of the screen's 24 lines. The bottom four lines are for text.

•!• For non-color users: Everything in this session assumes you're using a color
monitor or color television set. If you're using a black and white TV or a
monochrome monitor, the shapes you draw are displayed in different patterns
instead of in colors.

44 Graphics

Type and run this program: - Turn on graphics

NEW -=====--------------Pick a color. 10 GR - -

20 COLOR= 3 ----------------- Plot a point.
30 PLOT 19, 19
100 PRINT "Purple Square on Black Field (1986)"---Greatartalwayshasatitle.

A 40-by-40 canvas
The low-resolution graphics screen is a 40-by-40 grid. The PLOT instruction
places a block in the horizontal and vertical positions you specify. PLOT 0,
0 would place a block in the upper-left corner, and PLOT 39, 39 would put
a block in the lower-right corner.

Add the following lines to the program you just typed to see the limits of
PLOT. (Don't worry about not being able to see the rest of your program;
you'll see it all again in a minute.)

4 0 PLOT 0 , 0

5 0 PLOT 39, 39
RUN

When you run it now, you'll see three blocks running diagonally down the
screen. The one in the upper-left corner is position 0, O; the one at the
lower-left is position 39, 39. Here's what the whole matrix looks like:

0,0 l9,0 39,0 ,..._ ,_,....,.... __ .._... __ __ _... __ __ -.-..................... -.-...... -.-...............

0,39 19,39 39,39

A 40-by-40 canvas 45

Before continuing, see if you can plot blocks in the lower-left corner,
upper-right corner, and the middle of the left and right sides. Once you
know how to do that, you can plot anywhere you want.

Seeing your listing again
When you added new lines to your program, all the text above the new
lines scrolled out of sight behind the graphics. To see your listing again,
you'll need to get back to text mode.

Using immediate execution (that is, giving an instruction without a line
number), type :

TEXT

and press Return.

The strange pattern you see is the result of your Apple looking at its own
graphics symbols and interpreting them as text. To humans, it's just junk
(or Punk Art). Type:

HOME

and press Return. Then list the program. If you got the last program
right, your listing looks something like this:

LIST

10 GR

2 0 COLOR= 3

30 PLOT 19,

40 PLOT 0,

50 PLOT 39,

60 PLOT 0,

70 PLOT 39,

80 PLOT 0,

90 PLOT 39,

19

0

39

39

0

19

19

100 PRINT "Purple

46 Graphics

Square on Black Field (1986)"

Plotting colors with COLOR=
The COLOR= instruction (the = is part of the instruction) lets you decide
what colors go where. Here's a chart of all the colors you can use:

Number Color Number Color

0 Black 8 Brown

1 Magenta 9 Orange

2 Dark Blue 10 Dark Gray

3 Purple 11 Pink

4 Dark Green 12 Green

5 Gray 13 Yellow

6 Blue 14 Aqua

7 Light Blue 15 White

The COLOR= instruction by itself won't add color to anything. It colors
only what you draw on the screen. The color you set with COLOR= stays in
force until the next COLOR= instruction.

Add this new line to your program:

65 COLOR=l3

Now run the program and see what happens.

•!• Uncluttering the text: You've got only four lines of text when you use graphics
mode; you don't need to have one of those four lines cluttered up with a left-over
RUN instruction. Aesthetics are, after all, important. Adding a HOME
instruction early in the program (say, at line 5) will take care of the problem
nicely.

Using variables for plotting and coloring
You can use variables for plotting points and setting colors. Instead of
using absolute numbers as in COLOR= 10 or PLOT 10, 20, you can type COLOR=
HUE or PLOT COLUMN, ROW.

Type this next program. Before you run it, see if you can figure out what's
happening:

Using variables for plotting and coloring 47

NEW

10 GR
20 COLOR= 11------------- 11 is p ink.
3 o PLOT COLUMN, ROW----------Initial value of all variables is zero.
4 o COLUMN = COLUMN + 1 Don't panic; explanation to follow.
so IF COLUMN > 39 GOTO so 39 ls highest column number on grid .
50 ROW = ROW + 1
70 GOTO 30--------------Do it all again.
30 END

Incrementing columns and rows
Line 40 is called a counter in computer terms. Every time the computer
executes line 40, the value of the counter (called COLUMN) increases by
one. In everyday language, the line says, "Take the old value of COLUMN
and add 1 to it. From now on, use the new value." The original value of
COLUMN is 0 (all variables start with a value of O). After the computer
passes line 40 the first time, COLUMN holds 1; after the second time, it
holds 2. And so it goes until COLUMN holds a value greater than 39
(according to line 50), and the program ends.

•!• For budding computer geniuses only: Draw a diagonal line that crosses the first
one-that is, one that starts at the upper-right corner and goes to the lower-left.
It's tougher than it sounds, but once you figure it out, its simplicity will astound
you.

Maybe.

Hint: Start at 39 and work backwards.

Drawing horizontal and vertical lines
The PLOT instruction creates one block at a time. To draw a vertical or
horizontal line with PLOT, you could program a sequence of connected
blocks, just as you did to make a diagonal line. With Applesoft BASIC,
though, it's a lot easier to use HLIN (for horizontal line) and VLIN (for
vertical line). You use the same plotting coordinates as with PLOT. For
HUN, you put in the beginning and ending horizontal positions at a vertical
position with the AT instruction:

HLIN FIRST , LAST AT ROW

For VLIN, give the beginning and ending vertical positions at a horizontal
position:

VLIN FIRST , LAST AT COLUMN

48 Graphics

Look at this next example to see how to make a cross on the screen:

NEW

10 GR

20 COLOR = 15

30 HLIN 10,30 AT 19----------Drawsalinelefttoright

40 VLIN 10, 30 AT 19 Draws a line up and down.

Lines 30 and 40 look identical except one uses HLIN and the other VLIN.

As an exercise, change line 30 so that instead of a cross, the lines make a T
with the horizontal line right across the top of the vertical line.

A universal line-drawer
This program lets you put in different values to draw different lines. Use it
until you get a feel for where different values draw lines on the matrix:

NEW

5 TEXT

10 HOME

20 INPUT

3 0 INPUT

40 INPUT

50 INPUT

"Beginning block of HLIN: n; HB

"Ending block of HLIN: .. ; HE

"Row for HLIN: ";HP

"Beginning block of VLIN: ";VB

60 INPUT "Ending block of VLIN: " ;VE

70 INPUT "Column for VLI N: ";VP

100 REM ******************

1 10 REM DRAW THE LINES

120 REM ******************

130 GR

140 COLOR= 15

1 50 HLIN HB, HE AT HP

160 VLIN VB,VE AT VP

170 INPUT "More lines (Y/N)? .. ; AN$

180 IF AN$ = "Y" THEN 10

Try different values until you can predict exactly where the vertical and
horizontal lines will go. Just for the experience, enter values beyond the
range of the matrix (that is, greater than 39). For example, enter a value of
50 to see what happens. Learning what error messages mean is just as
important as learning how to do things without getting error messages.
Later, when you make a mistake (and everybody makes mistakes while
learning to program), you'll have a better idea of how to fix it.

Before you go on, modify the program so that it asks you what color you
want to use. If you're really feeling on top of things, add some code that

Drawing horizontal and vertical lines 49

displays the line coordinates at the bottom of the screen; the resulting text
should look like this:

Hori zontal line from 10 to 35 in row 15
Vertical line from 18 to 26 in column 25

Random graphics
Your computer has a random-number generator built into it. With it, you
can have your computer pull numbers out of its electronic hat. The RND
instruction by itself generates random decimal numbers between 0 and 1.

Try this program:

Last program used graphics.

NEW
10 TEXT
20 HOME
30 COUNT = COUNT + 1
40 PRINT RND(1) ------------ Print a random number.
50 IF COUNT = 5 THEN GOTO 70
60
70

GOTO 30 -==------------ Five numbers printed yet? -----------====-= If no, get another random number.

END

If yes, then end.

RND always prints a decimal number between 0 and 1. But by multiplying
whatever it produces by some whole number, you can make it cough up
numbers your computer can use to make graphics.

Change line 40 to this:

40 PRINT RND (1) • 40---------- Parentheses after RND required.

Now run the program again. All the numbers are greater than 0 and less
than 40.

•:• Parentheses required with RND: You must follow RND with a number enclosed in
parentheses. To make sure RND produces a different series of random numbers
every time you use it, use 1 or a higher number. (Experimentors: to get a
repeating series of numbers, use 0 or a negative number.)

Type and run this variation on the same program; it puts each random
number in a variable as the random number is produced:

50 Graphics

5 TEXT

10 HOME
20 NUMBER= RND(1) • 40

30 PRINT NUMBER

40 IF NUMBER > 38 THEN GOTO 60

50 GOTO 20

60 PRINT "That's it!"

70 END

This program runs until the random-number generator produces a number
greater than 38. Sometimes it lists a lot of numbers, and other times just a
few, depending on how soon a number greater than 38 comes up. Notice,
by the way, that the program generates numbers between 0 and
39 .9999-never any number as high as 40.

All you do to generate random graphics is to use randomly generated
variables in PLOT. You can also use randomly generated numbers to
produce different colors as well.

Type and run this next program for some colorful results:

10 GR

15 REM COLORS 0 - 15
2 0 HUE = RND(1) • 16

25 REM HORIZONTAL VALUES 0 - 39
30 COLUMN = RND(1) • 4 0

35 REM VERTICAL VALUES 0 - 39
40 ROW = RND(1) • 40

50 COLOR = HUE

60 PLOT COLUMN, ROW

70 IF ROW > 39 THEN END

8 0 GOTO 20

•!• What about the fractional part? A graphics instruction looks only at the whole
part of a number; it ignores the fractional part. To a graphics instruction,
39.999999 is 39; 1.111111 is 1; and any positive number less than 1 is 0.

A Minor Challenge for You: Nothing heavy-just change the program so
that it randomly generates horizontal and vertical lines of random length.

Random graphics 51

Summary and review
Color graphics add another dimension to your programming. You can
create useful programs with them, and they're lots of fun to play with.
Low-resolution graphics make rough figures, but they have a lot of color
and make good graphs. You use PLOT, HLIN, VLIN, and COLOR= along
with other programming instructions to build graphic images. The
random-number generator inside your Apple can automatically churn out
any range of numbers you want. When you combine RND and the
graphics instructions, you can create a kaleidoscope of shapes and colors.

52 Graphics

Session 7

Controlled Loops

In this session, you'll continue to learn about loops. You already know how
to do loops with GOTO. Here, you'll learn about the FOR\NEXT
instruction, which lets you decide in advance how many times a loop gets
executed. You'll learn some tricks using loops (like how to slow down
program execution). And as a bonus, you'll see how to do simple
animation.

The session ends with a list of all the commands, instructions, operators,
and programming concepts you've learned so far; the list is impressive.

FOR\ NEXT
You saw in Session 5 how to use a counter with IF ... THEN to control how
many times your computer performs a loop:

NEW
10 GR
2 0 COLOR= 11
30 PLOT COLUMN. ROW

----------Loop starts here.

40 COLUMN = COLUMN + 1 ---------Here's the counter ...
50 IF COLUMN > 3 9 GOTO so --------... to get you out of the loop.
6 0 ROW = ROW + 1
7 0 GOTO 30 --------------Loop ends here.
8 0 END

The FOR\NEXT instruction lets you define at the outset how many times
your program will loop. It has its own built-in counter. Here's the
structure of this two-part instruction:

FOR < variable > = < start > TO <finish >
< instrnctions in here get carried out >
NEXT < variable >

This program uses FOR\NEXT to repeat a loop 10 times. Type and run it:

54 Controlled Loops

NEW
10
20

TEXT

HOME

---------------- Last program was graphics; restores text mode.

=---------------Clears away the junk.

30 FOR ROUND = 1 TO 10 ---------This Is the FOR part ...

40 PRINT "This is round # II; ROUND ---- ... all Instructions within the loop get executed ...
50 NEXT ROUND ------------- ... and this Is the NEXT part.

When you run this program, the value of ROUND goes from one to ten.
The variable ROUND behaves just like any other variable, and as you see on
your screen, the numbers represent the values the loop generates. All of
the lines between the FOR and the NEXT are repeated until the loop
reaches its maximum value. In this case that value is ten.

You can start the loop at any value you want. Here's a bunch of line 30's
you can substitute (one at a time, of course) to see what happens:

30 FOR ROUND = 0 TO 20
30 FOR ROUND= -10 TO 10--------Beglnwlthanegatlve number.
30 FOR ROUND = 128 TO 255

Instead of using numbers to set up the FOR\NEXT loop, you can use
variables. For example, the following program lets you use INPUT to set
up the beginning and ending values of the loop:

NEW
10 HOME
20 INPUT "Lowest number: "; LOW
30 INPUT "Highest number: "; HIGH
40 HOME
50 FOR NUM = LOW TO HIGH
60 PRINT NUM
70 NEXT NUM

The FOR\NEXT loop works equally well with graphics. By setting up a
FOR\NEXT loop, you can draw diagonal lines to go with your vertical and
horizontal ones. Here's the original program:

FOR\ NEXT 55

10 GR
20 COLOR= 11
30 PLOT COLUMN, ROW

-----------Loop starts here.

40
50
60

COLUMN = COLU MN + 1
IF COLUMN > 39 GOTO
ROW = ROW + 1.

----------Here's the counter ... so-------- ... to get you out of the loop.

70 GOTO 30 --------------- Loop ends here.
80 END

Here's the FOR\NEXT version:

10 GR
20 COLOR= 11
30 FOR COUNT 0 TO 39
40 PLOT COUNT , COUNT
50 NEXT COUN T

Using STEP with FOR\ NEXT
Sometimes you'll want to count backwards or skip numbers in a program.
Use STEP with FOR\NEXT to specify the direction of the count and the
increment.

For example, this program counts by 5's. Type and run it:

NEW
5 TEXT
10 HOME
20 FOR NUMBER 10 TO 10 0 STEP 5-----Here's the llne to look at.

30 PRINT NUMBER
40 NEXT NUMBER

And this one counts backwards:

10 HOME
20 FOR COUNTDOWN
30 PRINT COUNTDOWN
40 NEXT COUNTDOWN

10 TO 0 STEP -1

50 PRINT "BLAST OFF! "

(Five extra points if you can draw the rocket.)

You can even create simple animation that uses forward and backward
stepping in graphics. Here's a bouncing block:

56 Controlled Loops

NEW
10 GR
20 FOR BOUNCE 0 TO 39
30 COLOR = 15
40 PLOT 19, BOUNCE

:~~~!..-------==== Sets color to white ... - =------------- ... so you can see the block.

50 COLOR = 0 --------------- Sets color to black ...
60 PLOT 1 9 , BOUNCE ------------- ... so you can erase It.
70 NEXT BOUNCE
100 REM ************
110 REM BOUNCE UP
120 REM ************
130 FOR BOUNCE = 39 TO 0 STEP -1
140 COLOR = 15
150 PLOT 1 9 , BOUNCE
160 COLOR = 0
170 PLOT 19, BOUNCE
180 NEXT BOUNCE

You can see how easy that was to do with a backward STEP. By the way,
the ball will keep on bouncing if you add :

190 GOTO 2 0

It'll get really pretty if lines 30 and 140 read:

COLOR= RND (1) • 16

To make the ball bounce diagonally, change-well, you figure that out on
your own.

Delay loops
Sometimes you'll want to slow down your program so that you can see
things happen on the screen that ordinarily go by too fast.

For example, type and run this next program to print a message on the
screen, clear the screen, and print another message:

NEW
2 TEXT
5 STALL = 1 ooo ---------------Change this value to change the pause length.
10 HOME
20 PRINT " A VERY IMPORTANT MESSAGE" ----- Show message ...
30 FOR PAUSE=l TO STALL ... hold It...
35 NEXT PAUSE
4 o HOME ... clear the screen ...
5 0 PRINT " BE SURE TO SAVE YOUR PROGRAMS" --- ... show message ...
60 FOR PAUSE=l TO STALL .. . hold It...
65 NEXT PAUSE
7 o HOME------------------ ... clear the screen.
80 PRINT "BEFORE YOU TURN OFF YOUR COMPUTER!"

Delay loops

The empty FOR\NEXT loops between showing the messages and the
HOME instructions give you time to read what's on the screen. (Take out
lines 30, 35, 60, and 65- just type their line numbers and press
Return-and the messages will fly by too fast for you to read when you run
the program.)

Use delay loops when you want several messages to be presented
automatically, and when you don't want to press any keys to see the next
message . You can make flashcard-type review programs with short delay
loops.

For a spelling quiz, have a word pop on the screen long enough to be read
but not long enough to be spelled. Here's a quick one to try:

NEW
5 STALL = 150--------------Change this value to change the pause length.
1 0 HOME
2 0 REM ******* ** *** * ** **** *
30 REM SPELLI NG WORDS
40 REM *** ****************
5 0 A $ " DUCK"
60 B$ = "JEWELRY "
7 0 C$ = "PROGRAMMING"
1 00 REM ***** ***********
11 0 REM SPEL LING TE ST
120 REM ** ********** *** *
1 30 PRINT A$
1 4 0 FOR LOOK = 1 TO STALL -------- Here's a delay loop.
1 45 NEXT LOOK
1 50 HOME
1 60 I NPUT " SPELL THE WORD "; SPELL$
170 IF SPELL$= A$ THEN RIGHT = RIGHT+ 1- Counteraddsupcorrectspellings.
1 80 PRINT B$
190 FOR LOOK= 1 TO STALL -------- Anotherdelayloop.
1 95 NEXT LOOK
20 0 HOME
2 1 0 I NPU T " SPELL THE WORD "; SPELL$
2 20 IF SPELL$ = B$ THEN RIGHT = RIGHT+l
2 30 PRINT C$
2 4 0 FOR LOOK = 1 TO STALL --------Yet another delay loop.
24 5 NEXT L OOK
25 0 HOME
260 INPU T " SPELL THE WORD "; SPEL L$
2 70 IF SPEL L$ = C$ THEN RIGHT RI GH T +1
28 0 HOME

2 90 PRINT " You g ot "; RI GHT; " words right ."

You can change the values in the delay loop (line 5) to give yourself more
or less time to see the word.

58 Controlled Loops

A quick review
You've come a long way in programming already, so now would be a good
time to review what you've learned in these first seven sessions. In general,
it's important to keep things simple-take programming a little chunk at a
time. Here's a list of everything you've learned so far. If you've forgotten
any of these terms, look them up in the glossary or check the index and go
back to the appropriate session to read about them again:

Commands

CAT

LIST

PR#O

Instructions

COLOR=

HOME

HLIN

PLOT

REM

Operators

+

I

<

>=

Concepts

Counter

DELETE

LOAD

RUN

END

FOR[STEP]\NEXT

IF...THEN

PRINT

TEXT

(

>

<=

Immediate and Deferred Execution

Loops

Numeric Variables

Prompting Messages

NEW

PR#l

SAVE

GR

GOTO

INPUT

RND

VLIN

)

Delay Loops

Line Numbers

Meaningful Names with Intervals

Precedence

String Variables

A quick review 59

Experiment before you continue
The final three sessions give you some refinements on the instructions and
techniques you've learned so far, and introduce some more tricks and
techniques. Before you go on, use what you've learned to invent your own
programs and to experiment. It's important to enjoy what you do with
your computer, and by writing programs that do things you like, not only
will you learn programming, but you'll have a good time as well.

Summary and review
In this session you worked with loops again-but these were controlled
loops. You refined your use of counters and discovered a new loop called
FOR\NEXT. You learned something about computer animation, and you
saw how to slow down a program by using delay loops. Then (unless you
took this opportunity to challenge authority) you went over all the
instructions and concepts you've learned so far, and you created new
programs of your own design.

60 Controlled Loops

Session 8

Programming With Style:
Modular Programming

You have enough knowledge now to write some very useful programs. In
fact, at the end of this session, you'll be assigned the task of constructing a
program to balance a checkbook.

Notice the word constructing in that last sentence. The best programs
aren't just lists of code lines; rather, they're well-planned collections of
program segments, each segment with its own job. In this session, you're
going to learn about program organization and the concept of program
modules.

GOSUB\RETURN
You'll often want to do the same thing in different parts of a program. For
example, in Session 7 you used the same delay loop three times in a fairly
short program:

60 FOR PAUSE = 1 TO STALL
70 NEXT PAUSE

Imagine a program in which you used the same lines ten, twenty, or thirty
times-and how tiresome typing the same thing again and again would
become (and how much of your computer's RAM your program would
use). Now consider the more common situation, where the repeated
routine (that is, collection of lines that does one specific function), rather
than being just four lines long, is 10 or more lines long. By the time you
were finished, you'd wear your fingers down to the second knuckle.

BASIC's GOSUB\RETURN instruction is made for just such situations. You
type a routine just once and keep using the same lines (with exactly the
same line numbers) again and again.

Here's how the PAUSE program looks without GOSUB\RETURN:

62 Programming With Style: Modular Programming

5 STALL = 1000
10 HOME
20 PRINT "A VERY IMPORTANT MESSAGE"
30 FOR PAUSE=l TO STALL
35 NEXT PAUSE
40 HOME
50 PRINT "BE SURE TO SAVE YOUR PROGRAMS"
60 FOR PAUSE = 1 TO STALL
65 NEXT PAUSE
70 HOME
80 PRINT "BEFORE YOU TURN OFF YOUR COMPUTER!"

And here it is with GOSUB\RETURN. Type and run it:

NEW
5 STALL = 1000
10 HOME
20 MESSAGE$ = "A VERY IMPORTANT MESSAGE"
30 GO SUB 210 ------------------ Go to a subroutine at line 210.
40 MESSAGE$ = "BE SURE TO SAVE YOUR PROGRAMS"
50 GOSUB 210
60 MESSAGE$ = "BEFORE YOU TURN OFF YOUR COMPUTER!"

70 GOSUB 210
190 END ------------------- You mus1· have this here.
200 REM **** MESSAGE SUBROUTINE *******
210 HOME------------------- Subroutine starts here.

220 PRINT MESSAGE$
230 FOR PAUSE = 1 TO STALL
240 NEXT PAUSE
250 RETURN------------------ Subroutine ends here; program returns to place

that sent it here with GOSUB.

GOSUB means "Go to a subroutine." (A subroutine is a routine within a
program reached through a GOSUB instruction.) Like GOTO, GOSUB
makes the program go out of the normal sequence of line numbers to do
something. Unlike GOTO, GOSUB returns to the point that it left; that's
what RETURN does at the end of the subroutine. You don't have to keep
track of the line number to go back to; GOSUB\RETURN keeps track for
you.

END protects subroutines
Subroutines usually appear at the end of a program (sub is Latin for under),
as in the examples in this session. You need to include an END instruction
between your main program and your subroutines.

To see why, take out the END instruction at line 190 and run the program.
(To take out a line, just type its line number and press Return.)

END protects subroutines 63

You got the error message RETURN WITHOUT GOSUB. Your computer
expects to see a RETURN instruction only when a GOSUB sends it to a
subroutine. If it encounters a RETURN by chance (as in this case), it
doesn't know where to return to, gets confused, and tells you so with the
error message.

One way to make sure your subroutines are isolated from the main
program is to decide right away what line number your subroutines will
start at, then put a line number and an END instruction right before that
number. In the program you've been working with, the subroutine starts
at line 210, just after the REM instruction at line 200; so the END instruction
comes in line 190.

Subroutines and organization
In this next example, the code appears in subroutines, not because the
program re-uses certain line segments often, but just because the program
is easier to read and more organized that way. As you get better as a
programmer, your programs tend to get longer and do more things. As
that happens, having good organization in your code becomes more and
more important.

Type and run this program. Note what's new about some of the lines that
hold REM instructions:

NEW

5 REM ***

10 REM

12 REM

14 REM

16 REM

Random Number Generator Program

This program generates as many random numbers

as the user wants. It also lets the user decide

the range of numbers.

18 REM ***

20 GOSUB 1010

30 GOSUB 1110

40 GOSUB 1210

REM Title page

REM How many numbers & what range?

REM Generate random numbers

50 GOSUB 1310 REM Go again?

60 IF AN$= "Y" THEN 30 : REM Repeat if yes ...

70 PRINT

80 PRINT "Thanks for the screen space." : REM ... if not, end

999 END

1002 REM ******************************

1004 REM Title Page

1006 REM ******************************

1010 HOME

1020 PRINT "Random Number Generator"

64 Programming With Style: Modular Programming

1020 PRINT "Random Number Gener ator"

1030 PRINT

1040 PRINT "This program print s as many random numbers "

1050 PRINT "as you want between 0 and any limit you c h oose."

1060 PRINT

1 0 70 PRINT

1080 INPUT "Press Retur n to star t: ";Start$

1090 RETURN

1102 REM **************************** **

1104 REM How many n umbers & what limit?

1106 REM ***** **** **** * ****** * *********

1110 HOME

1120 INPUT "How many numbers d o you wa nt? "; RNUMS

1130 PRINT

1140 INPUT "What ' s the h ighest a number can be? "; LIMIT

1150 RETURN

1202 REM ************** ************** * *

1204 REM Generate Random Numbers

1 20 6 REM ******* * ****** ************* ***

1210 FOR COUNT = 1 TO RNUMS
12 2 0 NUM = RND(1) •LIMIT

1230 PRINT NUM

1240 NEXT COUNT

1250 PRINT

1260 RETURN

1302 REM ******* ********

1304 REM Go again ?

1306 REM ***************

1310 INP UT "Do you want more random numbers? (Y/N) " ; AN$

1 320 RETURN

This program uses a lot of subroutines to make it easier to see what's
happening. Add to that all the REM instructions and the meaningful
variable names, and you have a program that's especially easy to
follow-both now, when you've just written it, and six months from now
when you might decide to change a few of the lines.

Multiple instructions on one line
You've probably already figured out that you can have more than one
instruction on a line if you put a colon (:) between instructions. Examples
abound throughout the previous program. The program uses the colon

Multiple instructions on one line 65

only to add REM instructions, but you can use the colon with all
instructions. Be careful, though; sometimes the results can surprise you.

For example, if you start a line with a REM instruction, your computer
ignores the whole line and not just the REM instruction:

20 REM This whole line ignored : GOSUB 1010 GOSUBlgnored!

We'll leave it to your own experimenting to discover other such surprises.

Organizing your programs: one step at a time
Sometimes the scope of a program feels overwhelming. It seems too
complex or too long or just beyond your skill level. Sometimes that's true.
You really don't have the ability to write a program that will control the
nation's budget (and apparently, neither does anybody else). But you can
do more than you probably realize with the things you've already learned.
You can, for example, write a program to balance your checkbook.

The trick is to break down the task into easily manageable segments. Think
for a moment how you balance your checkbook when you do it by hand:

1. Get the starting balance.

2. Add in the deposits.

a. Get the amount of a deposit.

b. Add that amount to the balance to produce a new balance.

c. Keep doing steps a and b until all deposits are added in.

3. Subtract amounts for checks.

a. Get the amount of a check.

b. Subtract that amount from the balance to produce a new balance.

c. Keep doing steps a and b until all checks are deducted.

4. Print the balance.

What you've just done is written out the algorithm (that is, the method to
solve the problem) for balancing a checkbook. Your next step is to write
modules for the steps in the algorithm; then all you need to do is line up
the modules in the proper way. Program organization is a matter of lining
up simple modules to work together.

66 Programming With Style: Modular Programming

The great checkbook balancing program challenge
Use the algorithm to write your own checkbook balancing program. Add
a module that sets up a little menu so you can choose what to do first-add
the total of checks written, or add up deposits.

After you've written your own version, have your computer print it out and
then check it against the one listed here. Treat this as an opportunity to
see how well you've understood what you've read in this tutorial. Take all
the time you need; and remember to use REM lines liberally!

One version of a checkbook balancing program
This is just one version. If your version works, then it's just as good as this
one. This version is here just in case you got stuck.

The important thing about this version is that it breaks the task down into
simple steps:

Module 1

5 REM **********************
10 REM CHECKBOOK BALANCER
15 REM **********************
20 HOME
30 I NPUT " Please type starting balance: $ " ; BALANCE
40 PRINT
50 PRINT " 1 . Enter Deposits"
60 PRI NT " 2 . Writ e Chec ks "
70 PRINT " 3. End"
80 INPUT "CHOOSE BY NUMBER "; NUMBER
90 IF NUMBER = 1 THEN GOSUB 200
100 IF NUMBER 2 THEN GOSUB 300
110 IF NUMBER = 3 THEN GOTO 17
12 0 IF NUMBER> 3 THEN GOTO 40---------Trapsout ofrangenumbers.
130 PRINT " Your working balance is $ " ; BALANCE
140 PRINT
150 I NPUT "Press Return t o cont inue : "; STALL$---Waits for user to be ready.
160 GOTO 40
170 PRINT
180 PRINT " Your ending balance is $ ";BALANCE
190 END

The first module represents the "body" of the program. Subroutines
handle every other task. The next module handles deposits and adds them
to the balance.

The g reat checkbook balancing program c hallenge 67

Module2

200 REM ****************
210 REM MAKE DEPOSITS
220 REM ****************
230 HOME
240 INPUT "How many deposits did you make? "; ND
250 FOR X= 1 TO ND
260 INPUT "Amount of deposit: $ "; DEP
270 BALANCE = BALANCE + DEP----------- Keeps running total.
280 NEXT X
290 RETURN

Next, do the same thing for checks, except instead of adding to the
balance, you subtract from it.

Module 3

300 REM ****************
310 REM WRITE CHECKS
320 REM ****************
330 HOME
340 INPUT "How many checks did you write? "; NC
350 FOR X= 1 TO NC
360 INPUT "Amount of check: $ "; CHECK
3 7 0 BALANCE = BALANCE - CHECK----------Keeps running total.
380 NEXT X
390 RETURN

When you go over this program, it's easy to see what each part does. The
REM lines show at a glance what happens in the subroutines.

Save your program onto the disk. In the next session, you'll learn how to
make your programs more attractive, and this program will be a good one
for you to practice on.

Summary and review
In this session, you learned about the GOSUB\RETURN instruction pair and
about the importance of good program organization.

The GOSUB\RETURN instruction pair helps to organize programs into
simple modules. Each subroutine is simply a task. Putting all the tasks
together in an organized way is the secret to efficient programming. It's
not how complex a program is, but rather how simple and well-organized
it is. Keep that in mind, and you can tackle much larger tasks.

"Keep it simple" best summarizes this chapter. Break a program down
into its component parts, and it becomes far easier to write.

68 Programming With Style: Modular Programming

Session 9

Formatting Screens

Generating information on a computer is exciting and rewarding. But the
way you present the information is often just as important as the
information itself. Just as a neatly organized and printed page conveys
more information than a bunch of scribbles on a scrap of paper, so too
does a well laid-out display have a greater impact than a barrage of
characters hurled at the screen.

Clear screen presentation not only helps communicate ideas; it helps you
organize your program as well. When you think about how something is
going to look on your screen, you're also deciding what order your
program must follow to get the results you want. Many programmers
decide what all the screens are going to look like even before they begin to
write the program.

This session teaches you the instructions and some of the techniques you
need to create good screen presentations. You'll learn about placing text,
highlighting important words , and creating menus. HTAB and VI'AB let
you place text anywhere on the screen. INVERSE lets you display
uppercase text in dark characters against a light background (the opposite
of what it usually is); NORMAL turns INVERSE off. You'll see how to
control the placement of INPUT prompts. And you'll learn an algorithm
for centering text.

Horizontal and vertical tabs
On a typewriter, you place your tab stops across the page. On your
computer, you use HTAB to determine where the next tab stop will be.

Type and run this program:

NEW
10 HOME
20 HTAB 20

30 PRINT "HERE IT IS"

Without line 20, the message appears in the upper-left corner of your
screen. The HTAB instruction makes the text begin twenty columns to the
right. HTAB has a range from 0 to 255; you use it to place text anywhere
across the screen. On the 40-column screen, each increment over 40
places the text one more line down. For example, HTAB 120 places text
down three lines (120 I 40 = 3).

70 Formatting Screens

Type the following program and run it:

10 HOME
20 I NPUT " HTAB value (0 - 255) "; HZ
30 HTAB HZ
40 PRINT " X"
50 PRINT
60 HTAB 20
70 INPUT "Another HTAB?(Y/N) "; AN$

80 IF AN$ = "Y" THEN 10 ----Lets user know program's over.
90 PRINT "Thanks for trying me out!"
1 00 END Optlona! ending.

Usually you'll use HTAB just to position your text horizontally. To make
vertical tabs, you'll use VTAB. VTAB works just like HTAB, but it can have
values only from 1 to 24.

To get a quick idea of how VTAB works, run this next little program:

NEW
10 HOME
20 VTAB 10
30 PRINT " ABOUT HERE "

Combining HTAB and VTAB, you can place text anywhere on the screen.

This next program lets you experiment with putting things on your screen
anywhere you want. Type and run it:

10 HOME
20 INPUT " HTAB position (1 - 40) "; HZ
25 IF HZ > 40 THEN PRINT "Too high!" : GOTO 2 0
30 INPUT "VTAB p os i t i on (1 - 24) "; VT
35 IF VT > 2 4 THEN PRINT " Too h igh!" : GOTO 3 0
40 HOME
50 VTAB VT : HTAB HZ : PRINT "X "
60 VTAB 22 : HTAB 20
7 0 INPUT "An other ? (Y/N) "; AN$
80 IF AN$ <> " N" THEN 10
90 PRINT " Bye, now ."
1 00 END

In lines 50 and 60, the HTAB and VTAB instructions are on the same line.
If you put HTAB and VTAB together like that, it's a little easier to organize
text placement.

Making stylish program menus is easy with HT AB and VT AB. This next
program uses a FOR\NEXT loop to generate positions for text.

Horizontal and vertical tabs 71

NEW
10 HOME
20 FOR X=l TO 6
30 HTAB 10 : VTAB (2 • X)---------Canyoufigureoutwhatthisdoes?
40 GOSUB 100
50 PRINT X; ". "; MENU$
60 NEXT X
70 VTAB 20 : HTAB 5
80 INPUT "Choose by number: "; NUMBER
90 END
100 REM *******************
110 REM MENU SELECTIONS
120 REM *******************
130 IF x 1 THEN MENU$ "Bring in the dog"
140 IF x 2 THEN MENU$ "Put out the cat"
150 IF x 3 THEN MENU$ "Feed the gorilla"
160 IF x 4 THEN MENU$ "Wash the seal"
170 IF x 5 THEN MENU$ "Pat the computer"
180 IF x 6 THEN MENU$ "END"
190 RETURN

That menu doesn't do anything other than show you how to use HT AB and
VTAB. But you can use this concept as a model in your own programs.

•!• Why menus with numbers? Good menus let users make choices by typing just one
or two keystrokes. You can see how important good menu design can be when you
look at this sample menu:

Which animal do you want information about?

Pachyderm

Pterodactyl

Ruffed Grouse

Serval

Programmorus Machinelinguae

Exit Program

Please type your choice here: I

This menu practically guarantees a typing error from all but the finest spellers.
Your code will have to include all kinds of special error protection to check your
user's typing. Numbered menus eliminate the problem:

Which animal do you want information about?

l)Pachyderm

2)Pterodactyl

3)Ruffed Grouse

4)Serval

5)Programmorus Machinelinguae

6)Exit Program

Please type your choice here (1 - 6): I

72 Formatting Screens

All your user has to do in this menu is type a number (and all your code has to
check for is a numeric range). Numeric menus make things easier for both the
user (who must type-and perhaps retype-choices) and for the programmer
(who must write the code).

Prompt placement
Good screen design demands that you pay attention to how your INPUT
prompts appear. Programmers often need to ask users for a number of
inputs in a row-several street addresses, a number of prices, a series of
names.

Type and run this program. It gets a series of inputs while keeping things
neat. It uses HT AB and VT AB, plus a new programming trick:

NEW
10 GOSUB 20 0--------------You'llreadaboutthislater.
20 HOME
30 INPUT " How many names to enter?
40 HOME
5 0 HTAB 5 : VTAB 10
60 PRINT " Type in the names one at
70 FOR X = 1 TO NAMES
80 HTAB 17 ; VTAB 10 : PRINT SPACE$
90 HTAB 17 : VTAB 10
100 INPUT "Name: "; NA$
1 10 NEXT X
12 0 END
200 REM ***************
210 REM SPACE MAKER
2 20 REM ***************

.. i NAMES

a time."

230 FOR S = 1 TO 20 REM SPACE$ IS 20 SPACES LONG
240 SPACE$ = SPACE$ + " "
250 NEXT S
260 RETURN

Again, this is just a sample. In a "real" program, you wouldn't just get names
and throw them away!

The SpaceMaker: The subroutine at line 200 introduces a nifty
programming trick. You could have defined SPACE$ like this:

SPACE$ = " ------20 spaces. Honest!

But that doesn't give you a very good idea of how many spaces are between
the quotation marks. Using a loop to build SPACE$, as the subroutine at
line 200 does, lets you see exactly how big the "blank out" space is going to
be .

Prompt placement 73

Of course, you aren't limited to just using spaces. Instead of using spaces,
use dashes or underline characters. Be creative-just change what's
between the quotation marks in line 240.

Getting noticed: INVERSE and NORMAL
Your computer can print inverse characters on the screen. The INVERSE
instruction changes text from light-on-dark to dark-on-light. All text after
an INVERSE instruction stays inverse until the program comes across a
NORMAL instruction.

Type and run this little program for a quick demonstration:

NEW

10 HOME

20 INVERSE

30 PRINT "THIS IS INVERSE"

40 NORMAL

50 PRINT "THIS IS NORMAL"

If you take out line 40, all of the text will be inverse. Because inverse text is
more useful in getting attention than in presenting general displays, it's a
good idea to put in the NORMAL instruction right after you've finished with
INVERSE.

To get the user's attention when the program wants information, use an
inverse prompt. For example, in a menu program, an inverse prompt
separates it from the menu choices:

10 HOME

20 TITLE$ = "MENO"

30 PRINT TITLE$

40 FOR X = 1 TO 4
50 HTAB 3 : VTAB (2 • X) + 2-------Flgurethls out yet?

60 PRINT "Choice Number "; X

70 NEXT X
80 VTAB 20 : INVERSE ---------- Turns it on here ...

90 INPUT " CHOOSE ONE: "; CHOOSE$

1 00 NORMAL -------------- ... and turns It off here.
110 •..

7 4 Formatting Screens

•!• INVERSE IS FOR UPPERCASE ONLY: INVERSE doesn't work well with lowercase
letters. For perverse technical reasons, lowercase letters sometimes get changed
to other characters when they're displayed in inverse. Experiment before you use
lowercase letters in your programs, just to be sure.

Experiment some with INVERSE. Try making an inverse line of spaces.
Put your name in inverse-in fact, use inverse text wit.l-i asterisks to create a
movie marquee and see your name in lights!

A text-centering algorithm
As you saw in the last session, algorithms are formulas written to perform
different tasks. All of the tricks you've seen in these sessions are actually
algorithms translated into computer code . As you've been experimenting
with programs on your Apple, chances are you've developed some of your
own algorithms. Most of the subroutines you've used are algorithms.

An algorithm for centering text is handy to have around, especially in a
session on screen formatting. To construct that algorithm, you'll need to
learn the LEN instruction. LEN calculates the length of a string. Here's an
example:

NEW

10 A$ = "Apples Away!"
2 o PRINT LEN { A$)-----------Parentheses are required (like RND).
RON

1 2

Apples Away! has 12 characters (including the space).

When you center text, you put half the characters to the left of a line's
midpoint and half the characters to the right.

Now that you have the basic idea, figure out on your own how the
computer would see it. Write the code, try it out, and then read the
solution in the next section.

One solution to the centering problem
Once again, this is just one possible solution. If yours is different and it
works, then yours is just as valid as this one.

Here's the algorithm:

1. Get the number of characters that fit on one line (the screen width);
that's either 40 or 80 on your Apple- choose the one you're using.

2. Find the string length by using LEN.

A text-centering algorithm 75

3. Subtract the string length from the screen width; divide the result by 2.
The result is the position you're looking for.

4. Use HTAB to move to that position.

Expressed as computer code, it looks like this:

HTAB (WIDTH - LEN (LETTERS$)) I 2 ----- All these parentheses are necessary.

Use that algorithm in a program that will center any text you type in.
Here's an example that keeps the algorithm in a subroutine. If your display
is 80 columns, change 40 in line 130 to 80:

NEW
10 HOME
20 INPUT "Enter any word: "; W$

30 GOSUB 100
40 INVERSE : VTAB 20
50 INPUT "WOULD YOU LIKE ANOTHER (Y/N) "; AN$

60 NORMAL : IF AN$ = "Y" THEN 10

70 END
100 REM **************

110 REM CENTER TEXT

120 REM **************
130 HTAB (40 - LEN(W$))/2 REM CENTERING ALGORITHM

140 VTAB 8
150 PRINT W$
160 RETURN

Summary and review
In this session, you learned about the importance of designing clear screen
displays and about program menus.

Using HTAB and VTAB, you can place text anywhere on the screen. Text
placement helps make clear what you're trying to say or what the program
expects you to do next.

You learned that the INVERSE and NORMAL instructions separate and
highlight text on your screen. These instructions help you make the
program easier to use by highlighting important elements on the screen
display.

You also learned that the soul of programming is algorithms. Like all other
aspects of programming, you can build your own algorithms by reducing a
task to a set of simple parts. Each algorithm, in turn, becomes a program
building block.

7 6 Formatting Screens

Session l O

Programming for People

Congratulations! You've nearly completed your introduction to Applesoft
BASIC and to the principles of programming. Most of the concepts you
learned in this tutorial are traditional ones (as much as a science that's been
around for only 45 years can have traditions). In this final session, you'll
read about some even newer traditions, ones that have been developing
only since the coming of personal computers. 1be ultimate goal is to get
you to "humanize" your programs, to set them up in such a way that any
computer novice can learn them quickly and use them easily.

You'll also read about how you can get a lot more help learning to program
by joining a users group, taking programming classes, reading books, and
subscribing to computer magazines.

A sordid history
Back in the old days (that is, before 1980 or so), programmers spent
almost none of their time teaching their computers how to behave with
humans. Programmers were primarily concerned with getting their
programs to work without being stopped too often by error messages;
because they themselves were usually the only people who used their
programs, what they wrote didn't have to be "user-friendly." That was OK
then; most people programmed for themselves and didn't share their
programs with too many other people.

But remarkable changes have taken place over the last few years. Literally
millions of people now own computers, and many thousands write
programs for themselves, their business colleagues, and their friends. Most
programmers, both hobbiests and professionals, belong to users
groups-associations of computer owners who get together monthly (the
fanatics do it weekly) to share their experiences, discoveries, and
homemade programs.

If you're going to team up with this ever-growing group of sharing
programmers (and if you continue to program, it's likely you will), it's
important that you make your programs as easy to use as possible. The
idea that programs and computers should be made for people and not the
other way around is still revolutionary in a lot of circles. You are hereby
officially invited to join the revolution.

78 Programming for People

People-program guidelines
Here are a few principles you can follow when you write programs for
people. This list certainly doesn't exhaust the possible ways you can make
your programs fit for human consumption, but it's enough to get you
started:

Give Clear Prompts. To make it easy for your users to see what your
program expects when it wants information, your program must
communicate exactly what it wants. Prompts should stand out, be worded
simply, and give the range of choices if there is a range.

Include Error Traps. People make mistakes. Your program should catch
errors as much as it can and give your users a chance to make things right.
Your program can easily check for the two most common problems: range
errors and typing mistakes. In a range error, your user types in something
that is beyond the range either of the computer or of the program:

90 ...
110 INPUT "Your choice - 0, 1, 2, or 3: "; CHOICE
12 0 I F CHOICE < 4 THEN GOTO 170---------------Branches if choice OK.

130 PRINT "Sorry - choice must be 0, 1, 2, or 3." Error trap here.
140 PRINT "Please make another choice."
150 PRINT
160 GOTO 110 -----------------------Goes back for another try.
1 7 o Comes here if OK.

In a typing mistake, your user types something he or she didn't mean, or
makes a simple spelling error:

90 ...
100 INPUT "Na me of program to erase: "; ERASE$
110 PRINT
12 0 INVERSE
130 PRI NT "WARNING! IF YOU ERASE" ------------- Gives a warning .

14 0 PRINT ERASE$ Reprints entry.
150 PRINT "IT'S GONE FOREVER! "
160 PRINT
170 NORMAL
180 INP UT "WIPE OUT THE PROGRAM? (Y / N) "; KILL$
190 IF KILL$ <> "Y" THEN HOME: GOTO 100-----------Cancelsifnotverified.
2 00 .. .

Leave an Exit Open. Don't forget to give users a way out of your program.
As wonderful as your program might be to use, people do like to do other
things like eat, go to school, and take vacations. There are several ways you
can determine when your user has finished using your program.

People-program guidelines 79

For example, you can have a question at the outset to ask how many entries
the user needs to make:

90 ...
1 00 INPUT "How many checks did you write? "; CHECKS
110 FOR X = 1 TO CHECKS
12 0 ...

Or you can give an exit option after each entry:

90 .•.

100 INPUT " How much is the next check for? $ "; AMOUNT
11 0 BALANCE = BALANCE - AMOUNT
120 INPUT "Another check? (Y/N): ";ANS$
130 IF ANS$ = "N" THEN GOSUB 1000 : REM Show balance and end
14 0

Or you can have the program return to a menu with an exit option after
each entry or series of entries:

90 . . •

100

11 0

12 0

1 30

1 40

PRINT

PRINT

PRINT

PR INT

VTAB

"1 .

"2 .

" 3 .

"4.

22 :

Enter

Change

Print

Leave

HTAB 25

mor e names"

an entry"

out all entries"

the program"

15 0 INPUT "Your choice: "; CHOIGE

160 IF CHOICE = 4 THEN END

170

To see the rules in action, type and run each of the following two
programs; the first doesn't follow the rules and the second does:

Nerd Programming (Yueh)

10 INP UT A

20 SUM=SUM + A

30 PRINT SUM

40 GOTO 10

80 Programming for People

People Programming (FantasHc)

10 HOME

20 INPUT "Amount to add (0 to stop)"; AMOUNT: REM Get amount.

30 IF AMOUNT= 0 THEN GOTO 130 : REM End if user's through.

40 PRINT

50 PRINT "You added "; AMOUNT; ", right? (Y/N) ";

60 INPUT ""; YN$: REM Entry OK?

70 IF YN$ ="N" THEN GOTO 20 : REM If not, get it again.

80 SUM= SUM+ AMOUNT : REM Keep Running total . ..

90 PRINT

100 PRINT "Your running total is"; SUM: REM ... and report it.

110 PRINT

120 GOTO 20 : REM

130 PRINT

Get another number

140 PRINT "Final total: "; SUM : REM Print the final total.

Humanizing programs isn't easy
The second program requires more work than the first one. It takes more
planning, more typing, and more debugging to write a good interactive
program (that is, one that talks to people). It is also worth it. Real people
make mistakes; write programs with that in mind.

It gets easier
The more you learn about programming, the easier it gets. After you've
been programming for a while, you'll find that what once took you twenty
lines of programming you may do in only five lines. By experimenting,
playing, and trying new things with your Apple computer, your
programming ability will grow quicker than you can imagine.

Where do you go from here?
If you decide that programming's not for you, then there's no problem.
You don't have to know how an internal combustion engine works to drive
a car, and you don't have to know how to program to use a computer. But
if you've enjoyed going through this tutorial and you've decided that
programming is fun and interesting, you can do lots of things to help
yourself learn more.

Where do you go from here? 81

Read Books on Applesoft Programming: Hundreds of books have been
written on Applesoft, from tutorials to advanced technical documents. Any
decent bookstore has at least a few Applesoft titles; the larger stores carry
dozens. The absolutely indispensible resource is the Applesoft BASIC
Programmer's Reference Manual, published by Addison-Wesley (ISBN 0-
201-17722-6). Written by the experts at Apple Computer, Inc., this is the
official Applesoft book. Your Apple Computer dealer or local bookstore
carries it or can order it for you.

Join an Apple Users Group: Made up of people at all levels of expertise,
Apple users groups are a new computerist's best friend. As each member
learns something, he or she passes it on to the others. Most clubs have
special subgroups for beginners; virtually all of them have special interest
subgroups for learning Applesoft BASIC, as well as for other computer
languages. (Logo, Pascal, C, and Forth are the most popular ones.) Besides
being practical, these groups are a lot of fun.

•!• Free software! One of the best ways to learn how to write programs is to look at
somebody else's. When you join an Apple users group, you'll have access to tons
of public domain software. And many public domain programs are written in
Applesoft.

Programming Classes: You can find programming classes in high schools,
universities, community colleges, computer stores, specialty schools, and
users groups. Check with the instructor about the level of the class before
you take it; if possible, talk to some graduates. Then you'll be sure that the
instruction is at the level you want.

Subscribe to Magazines About Apple Computers: There are dozens of
computer magazines, many specializing in Apple computers. See if you can
find one that deals exclusively with your model of Apple. Some Apple
magazines cover both Macintosh and Apple II family computers, while
others cover only one or the other. And some are aimed more at program
users than at program writers. Again, this is an area where a users group
can really help out. Not only can members recommend magazines that
have beginners' columns, but many clubs have libraries of back issues you
can use.

Do itl
The most important thing you can do to learn to program is-to program.
Write silly programs and serious programs, long and short programs,
programs that are fancy, and programs that are plain. Just do it! You'll
learn more from an hour of mistakes than from a week's listening in a
classroom. Code to your heart's content.

82 Programming for People

A parting word
This brief book has been a guided exploration through some of the most
important concepts in elementary programming. You didn't learn all of
the instructions in Applesoft BASIC; there are far too many of them to
teach in one short manual. But what you learned here can serve you well if,
whenever you write a program, you remember that you're writing for other
people.

And keep on coding!

A parting word 83

Appendix A

A Summary of Applesoft
Instructions

This is a brief summary of all the instructions in the Applesoft BASIC language. This
summary is included for those programmers already proficient in some other
computer language, but new to Applesoft BASIC.

For a complete description of these instructions, see the Applesojt BASIC
Programmer's Reference Manual (Addison-Wesley Publishing Company, Inc.).

ABS

ABS (-2. 77)

Yields the absolute value (value without regard to sign) of the argument. The
example yields 2.77.

ASC

ASC ("QUEST")

Yields the ASCII code for the first character in the argument. The example yields 81
(ASCII code for Q).

Assignment Instruction

LET A ~ 23.567

A$ ~ "HUMBUG"

Assigns the value of the expression following = to the variable preceding it. LET is
optional.

Appendix A 85

ATN

ATN (. 8771)

Yields the arc tangent, in radians, of the argument. The example yields .720001187
(radians).

CALL

CALL -922

Executes a machine-language subroutine at the specified decimal memory address.
The example issues a line feed.

CHR$

CHR$ (65)

Yields the character corresponding to the ASCII code given as an argument. The
example yields the letter A.

CLEAR

CLEAR

Resets all variables and internal control information to their initial state. Program
code is unaffected.

COLOR=

COLOR= 12

Sets the display color for plotting low-resolution graphics. The example sets the
display color to green.

CONT

CONT

Resumes program execution after it has been halted by STOP, END, CONTROL-C, or
(sometimes) CONTROL-RESET.

cos
cos (2)

Yields the cosine of the argument, which must be expressed in radians. The example
yields -.416146836.

DATA

DATA JOHN SMITH, "CODE 32", 23.45, -6

Creates a list of items for use by READ instructions. In the example, the first item is
the string JOHN SMITII, the second is the string "CODE 32 ", the third is the real
number 23.45, and the fourth is the integer -6.

86 Appendix A

DEF FN

DEF FN CUBE (X) = X • X • X

Defines a new function for use in the program. The example defines a function that
yields the cube of its argument.

DEL

DEL 23, 56

Deletes a range of consecutive lines from the program. The example deletes lines 23
to 56, inclusive.

DIM

DIM MARK (50,3), NAME$ (50)

Defines and allocates space for one or more arrays. The example defines a two­
dimensional real array MARK, whose first subscript varies from 0 to 50 and whose
second varies from 0 to 3, and a string array NAME$ with one subscript that varies
from 0 to 50.

DRAW

DRAW 4 AT 50,100

DRAW 4

Draws a shape at a specified point on the high-resolution graphics screen from the
shape table currently in memory. The first example draws shape number 4,
beginning in column 50, row 100, using the current color, scale, and rotation
settings; the second example draws shape 4 at the last point plotted by HPLOT,
DRAW, or XDRAW.

END

END

Terminates the execution of the program and returns control to the user. No message
is displayed.

EXP

EXP (2)

Yields the mathematical exponential of its argument (that is, the constant e-
2. 7182818-raised to the power specified by the argument). The example yields e
squared, or 7.3890561.

FLASH

FLASH

Causes all text displayed on the screen with subsequent PRINT statements to flash
between light-on-dark and dark-on-light. May not work properly for lowercase
letters (and other characters with ASCII codes above 95) if the computer is running in
"active-80" mode.

Appendix A 87

FN

FN CUBE (6)

Applies a designated function to the value of the argument expression. Assuming the
definition for the function CUBE given under DEF FN, the example yields the value
216.

FOR

FOR J = 1 TO 10

FOR MA RK = 0 TO 100 STEP 5

FOR NU MBER = 20 TO -20 STEP -2

Marks the beginning of a loop, identifies the index variable, and gives the variable's
starting and ending values and (optionally) the amount by which it is to change (step)
on each pass through the loop . The first example begins a loop whose index variable
] takes on all values from 1 to 10, stepping by 1; the second begins a loop whose index
variable MARK takes on values from 0 to 100, stepping by 5; the third begins a loop
whose index variable NUMBER takes on values from 20 to -20, stepping by -2.

FRE

FRE (0)

Yie lds the amount of remaining memory, in bytes, available to the program. Also
forces "garbage collection" of dead strings. The argument is ignored, but must be a
valid Applesoft expression.

GET

GET ANSWER$

Accepts a single character from the keyboard without displaying it on the screen and
without requiring that the Return key be pressed. Program execution is suspended
until the user presses a key. In the example, the character typed is assigned to the
variable ANSWER$.

GOSUB

GOS UB 250

Executes a subroutine beginning at the designated line number (250 in the example).

GOTO

GOTO 400

Sends control unconditionally to the designated line number (400 in the example).

GR

GR

Converts the display to 40 rows of low-resolution graphics with four lines of text at the
bottom. The screen is cleared to dark, the cursor is moved to the beginning of the
last line, and the low-resolution display color is set to black.

88 Appendix A

HCOLOR=

HCOLOR= 1

Sets the display color for plotting high-resolution graphics. The example sets the
display color to green.

HGR

HGR

Converts the display to 160 rows of high-resolution graphics with four lines for text at
the bottom. The screen is cleared to black and page 1 of high-resolution graphics is
displayed. The contents of the text display, the location of the cursor, and the high­
resolution display color are unaffected.

HGR2

HGR2

Converts the display to full-screen (192 rows) high-resolution graphics with no text.
The screen is cleared to black and page 2 of high-resolution graphics is displayed.
The contents of the text display, the location of the cursor, and the high-resolution
display color are unaffected.

HIMEM:

HIMEM: 32767

Sets the address of the highest memory location available to the Applesoft program,
including its variables. The example sets the end of program and variable storage to
32767. Used to protect an area of memory for data, high-resolution graphics, or
machine-language code.

HUN

HLIN 10 , 20 AT 30

Draws a h orizontal line in low-resolution graphics, using the current low-resolution
display color. The example draws a line across row 30 from column 10 to column 20.

HOME

HOME

Clears all text from the text window and moves the cursor to the top-left corner of the
window.

HP LOT

HPLOT 75, 20

HPLOT 48, 115 TO 79 , 84 TO 110 , 115

HPLOT TO 270 , 10

Plots a point or line on the high-resolution graphics screen in the current high­
resolution display color. The first example plots a single point at column 75, row 20;
the second example draws lines from column 48, row 115 to column 79, row 84 to

Appendix A 89

column 110, row 115; the third draws a line to column 270, row 10 from the last point
plotted with HPLOT, using the color of the last point plotted (not necessarily the
current display color).

HTAB

HTAB 23

Positions the cursor to a specified column of the text display. The example moves
the cursor to column 23.

IF ... THEN

IF AGE < 18 THEN A= 0 : B = 1: C 2
IF ANSWER$ = "YES" THEN GOTO 100
IF N > MAX THEN GOTO 25

IF N > MAX THEN 25

I F N > MAX GOTO 25

Executes or skips one or more instructions, depending on the truth of a stated
condition. The first example sets A to 0, B to 1, and C to 2 if the value of AGE is less
than 18; the second branches to line 100 if the value of ANSWER$ is the string "YES";
the last three all branch to line 25 if the value of N is greater than that of MAX. In all
cases, if the stated condition is false, execution continues with the next program line.

IN#

IN# 2

Specifies the source for subsequent input. The example causes subsequent input to be
read from the device at port 2.

INPUT

INPUT A%

INPUT "TYPE AGE, THEN A COMMA, THEN NAME "; AGE , NAME$

Reads a line of input from the current input device. The first example reads a value
into variable Ao/o; the second displays a prompting message and then reads values
into variables AGE and NAME$.

INT

INT (98. 6)

INT (-273, 16)

Yields the integer part of the argument value. The examples yield 98 and -274,
respectively.

INVERSE

INVERSE

Causes all uppercase text displayed on the screen with subsequent PRINT instructions
to appear in dark-on-light instead of the usual light-on-dark. Has unpredictable
effects on lowercase text.

90 Appendix A

LEFT$

LEFT$ ("APPLESOFT", 5)

Yields a specified number of characters from the beginning of a string. The example
yields the string APPLE.

LEN

LEN ("NEVER A DULL MOMENT")

Yields the length of a string in characters. The example yields 19.

LET

See "Assignment Instruction."

LIST

LI ST

LI ST 15 0

LIST 200-300

LI ST 200, 300

Displays all or part of the program on the screen, or writes it to the current output
device. The first example lists the entire program; the second lists line 150 only; the
last two list lines 200 to 300, inclusive.

LOAD

LOAD DEMO

Reads a program into memory from a disk. The example reads a program from a
disk file named DEMO.

WG

LOG (2)

Yields the natural logarithm of the argument. The example yields .693147181.

LOMEM:

LOMEM: 245 76

Sets the address of the lowest memory location available to the program for variable
storage. The example sets the beginning of variable storage to 24576.

MID$

MID$ ("AN APPLE A DAY", 4, 5)

MID $ ("AN APPLE A DAY", 4)

Yields a specified number of characters beginning at a specified position in a given
string. The first example yields the string APPLE; the second yields the string APP LE A

DAY.

Appendix A 91

NEW

NEW

Clears the current program from memory and resets all variables and internal
control information to their initial states.

NEXT

NEXT

NE XT INDEX

NEXT J , I

Marks the end of a loop and causes the loop to be repeated for the next value of the
index variable, as specified in the corresponding FOR instruction. The first example
ends the most recently entered loop; the second ends the loop whose index variable
is INDEX; the third ends the pair of nested loops whose index variables are] and I.

NORMAL

NORMAL

Causes all text displayed on the screen with subsequent PRINT instructions to appear
in the usual light-on-dark; cancels the effects of INVERSE.

NOTRACE

NOTRACE

Stops the display of line numbe rs for each instruction executed; cancels the effects of
TRACE.

ON ... GOSUB

ON ID GOSOB 100, 200 , 23 , 4005 , 50 0

Chooses a subroutine to execute depending on the value of an expression. The
example transfers control to the subroutine beginning at line 100, 200, 23, 4005, or
500, depending on whether the value of ID is 1, 2, 3, 4, or 5; if ID has none of these
values, execution continues with the next instruction.

ON ... GOTO

ON I D GOTO 100, 200, 2 3, 4005 , 500

Chooses a line number to branch to depending on the value of an expression. The
example transfers control to line 100, 200, 23, 4005, or 500, depending on whether
the value of ID is 1, 2, 3, 4, or 5; if ID has none of these values, execution continues
with the next instruction.

ONERR GOTO

ONERR GOTO 500

Replaces Applesoft's normal error-handling mechanism with a subroutine beginning
at a specified line number. The example establishes an error-handling subroutine
beginning at line 500.

92 Appendix A

POL

PDL (1)

Reads the current dial setting on a designated hand control. The example reads the
dial on hand control 1.

PEEK

PEEK (37)

Yields the contents of a specified location in memory. The example yields the
contents of location 37, which contains the current vertical position of the text cursor
on the display screen.

PLOT

PLOT 10 , 20

Plots a single block of the current display color at a specified position on the low­
resolution graphics screen. The example plots a block at column 10, row 20.

POKE

POKE - 16302 , 0

Stores a value in a specified loca tion in memory. The example stores the value 0 at
location 49234 (65536 - 16302), causing the display to switch from mixed graphics
and text to full-screen graphics.

POP

POP

Removes the most recent return address from the control stack, causing the next
RETURN instruction to send control to the instruction following the second most
recently executed GOSUB.

POS

POS (0)

Yields the current horizontal position of the cursor on the text display. The
argument is ignored, but must be a valid Applesoft expression.

PR#

PR# 1

Specifies the destination for subsequent output. The example causes subsequent
output to be sent to the device at port 1.

PRINT

PRINT

PRINT A$, " X = "; X

Writes a line of output to the current output device. The first example writes a blank
line; the second writes the value of variable A$, followed at the next available tab
position by the string "X = ", followed immediately by the value of variable X.

Appendix A 93

READ

READ A, B%, C$

Reads values from DATA instructions in the body of the program. The example
reads values into variables A, Bo/o, and C$.

REM

REM THIS A REMARK

Includes remarks in the body of a program for the benefit of a human reader.

RESTORE

RESTORE

Causes the next READ instruction executed to begin reading at the first item of the
first DATA instruction in the program.

RESUME

RESUME

At the end of an error-handling routine (see ONERR GOTO), causes resumption of
the program at the beginning of the instruction in which the error occurred.

RETURN

RETURN

The last instruction in a subroutine returns control from a subroutine to the
instruction following the GOSUB that called the subroutine.

RIGHT$

RIGHT$ ("APPLESOFT", 4)

Yields a specified number of characters from the end of a string. The example yields
the string SOFT.

RND

RND (1)

Yields a random number between 0 and 1. Zero and negative argument values yield
repeatable sequences of random numbers.

ROT=

ROT= 16

Sets the angular rotation for high-resolution shapes to be drawn with DRAW or
XDRAW. The example causes the shape to be rotated 90 degrees clockwise.

94 Appendix A

RUN

RUN

RUN 500

RUN DEMO

Executes an Applesoft program. The first example executes the program currently in
memory from the beginning; the second executes the program in memory, starting
at line 500; the third loads and executes a program from a disk file named DEMO.

SAVE

SAVE DEMO

Writes the named Applesoft program currently in memory to a disk. The example
writes the program to a disk file named DEMO.

SCALE=

SCALE= 10

Sets the scale factor for high-resolution shapes to be drawn with DRAW or XDRA W.
The example causes the shape to be drawn ten times bigger than the definition given
in the shape table.

SCRN

SCRN (10, 20)

Yields the code for the color currently displayed at a designated position on the low­
resolution graphics screen. The example yields the code for the color at column 10,
row20.

SGN

SGN (-144)

Yields a value of -1, 0, or + 1, depending on the sign of the argument. The example
yields -1.

SIN

SIN (2)

Yields the sine of the argument, which must be expressed in radians. The example
yields .909297427.

SPC

SPC (8)

Introduces a specified number of spaces into the line being written by a PRINT
instruction. The example writes eight spaces.

SPEED=

SPEED= 50

Sets the rate at which text characters are to be sent to the display screen or other
input/output device. The slowest rate is O; the fastest is 255.

Appendix A 95

SQR

SQR(2)

Yields the positive square root of the argument; the example yields 1.41421356.

STOP

STOP

Terminates the execution of the program and returns control to the user. A message
is displayed identifying the program line in which the STOP instruction appears.

STR$

STR$ (12.45)

Yields a string representing the numeric value of the argument. The example yields
the string "12.45".

TAB

TAB (23)

Positions the text cursor at a specified position on the output line during execution of
a PRINT instruction. The example moves the cursor to column 23.

TAN

TAN (2)

Yields the tangent of the argument, which must be expressed in radians. The
example yields -2.18503987.

TEXT

TEXT

Converts the display to 24 lines of text, with the cursor positioned at the beginning of
the bottom line.

TRACE

TRACE

Causes the line number of each instruction to be displayed on the screen as it is
executed.

USR

USR (3)

Executes a machine-language subroutine supplied by the user, passing it a specified
argument. The subroutine is entered via a JMP (jump) instruction stored at addresses
$0A through $0C hexadecimal. The example passes the argument value 3.

96 Appendix A

VAL

VAL ("-3.7E4")

Yields the numeric value represented by the string supplied as an argument. The
example yields -37000.

VLIN

VUN 10, 20 AT 30

Draws a vertical line in low-resolution graphics, using the current low-resolution
display color. The example draws a line down column 30 from row 10 to row 20.

VTAB

VTAB 15

Positions the cursor to a specified row of the text display. The example moves the
cursor to row 15

WAIT

WAIT 49347, 15

WAIT 49347, 15, 12

Suspends program execution until a specified bit pattern appears at a specified
memory location. Used to wait for a status signal from a peripheral device. The
second and (optional) third arguments are masks: the second specifies which bits of
the designated location are of interest, the third specifies the values to be tested for in
those bits. The first example suspends execution until a 1 bit appears in any of the
four low-order bit positions of location 49347; the second waits for a 1 bit in position
0 or 1 or a 0 bit in position 2 or 3.

XDRAW

XDRAW 4 AT 50, 100

XDRAW 4

Draws a shape from the shape table currently in memory at a specified point on the
high-resolution graphics screen. Each point in the shape is plotted using the
complement of the color currently displayed at that point. Typically used to erase a
shape already drawn. The first example erases shape number 4, beginning in
column 50, row 100, using the current scale and rotation settings; the second
example erases shape 4 at the last point plotted by HPLOT, DRAW, or XDRA W.

Appendix A 97

Appendix B

Reserved Words

Table B-1 shows a list of Applesoft's reserved words. In most cases these character
sequences cannot be used as, or embedded in, variable names.

The ampersand character (&) is reserved for Applesoft's internal use and for user­
su pplied machine-language routines.

XPLOT is a reserved word that does not correspond to a current Applesoft statement.

Some reserved words are recognized by Applesoft only in certain contexts:

COLOR, HCOLOR, ROT, SCALE, and SPEED are interpreted as reserved words only
if the next nonspace character is an equal sign (=). This is of little benefit in the case
of COLOR and HCOLOR, as the embedded reserved word OR prevents their use as
variable names anyway.

HIMEM and LOMEM are interpreted as reserved words only if the next nonspace
character is a colon (:).

IN and PR are interpreted as reserved words only if the next nonspace character is a
number sign (#).

SCR.il\J, SPC, and TAB are interpreted as reserved words only if the next nonspace
character is a left parenthesis, (.

ATN is interpreted as a reserved word only if there is no space between the T and the
N. If a space occurs between the T and the N, the reserved word AT is interpreted
instead of ATN.

Appendix B 99

TO is interpreted as a reserved word unless it is preceded by an A and there is a space
between the T and the 0. In that case, the reserved word AT is interpreted instead of
TO.

Even if you don't embed reserved words in your variable names, they can sometimes
pop up unexpectedly and cause problems. For example, the statement

100 FOR A = LOFT OR LEFT TO 15

is interpreted as

100 FOR A = LOF TO RLEFT TO 15

and causes a syntax error. To force the correct interpretation, use parentheses:

100 FOR A = (LOFT) OR (LEFT) TO 15

Table 8-1 Applesoft Reserved Words

$ FLASH IF ON SAVE
FN IN# PDL SCALE=

ATN PEEK SCRN(
GET LEFT$ PLOT SGN

CALL GOSUB LEN POKE SHLOAD
CHR$ GOTO LET POP SIN
CLEAR GR LIST POS SPC(
COLOR= LOAD PRINT SPEED=
CONT LOG PR# SQR
cos HCOLOR= LOMEM STEP

HGR STOP
DATA HGR2 READ STORE
DEF HIM EM: MID$ RECALL STR$
DEL HLIN RESTORE
DIM HOME RESUME
DRAW HP LOT NEW RETURN TAB(

HTAB NEXT RIGHT$ TAN
END NORMAL RND TEXT
EXP NOT ROT= THEN

NO TRACE RUN TO
TRACE

100 Appendix B

-lJSR

VAL
VLIN
VTAB

WAIT

XPLOT
XDRAW

Glossary

address: A number used to identify something,
such as a location in the computer's memory.

algorithm: A step-by-step procedure for solving a
problem or accomplishing a task.

Apple II: A family of personal computers,
manufactured and sold by Apple Computer, Inc.;
generic name for all computers in the series.

Applesoft: An extended version of the BASIC
programming language used with the Apple II
family of computers and capable of processing
numbers in floating-point form. An interpreter
for creating and executing programs in Applesoft
is built into the Apple II system in ROM.

arithmetic operator: An operator, such as +, that
combines numeric values to produce a numeric
result; compare relational operator.

BASIC: Beginners All-purpose Symbolic
Instruction Code; a high-level programming
language designed to be easy to learn and use.

branch: To send program execution to a line or
instruction other than the next in sequence.

bug: An error in a program that causes it not to
work as intended.

catalog: A list of all files stored on a disk;
sometimes called a directory.

character: A letter, digit, punctuation mark, or
other written symbol used in printing or displaying
information in a form readable by humans.

code: (1) A number or symbol used to represent
some piece of information in a compact or easily
processed form. (2) The statements or
instructions making up a program.

command: A communication from the user to a
computer system (usually typed from the
keyboard) directing it to perform some immediate
action.

computer: An electronic device for performing
predefined (programmed) computations at high
speed and with great accuracy.

computer system: A computer and its associated
hardware, firmware, and software.

concatenate: Literally, "to chain together"; to
combine two or more strings into a single, longer
string containing all the characters in the original
strings.

conditional branch: A branch that depends on
the truth of a condition or the value of an
expression.

control variable: see index variable.

counter: A variable used to keep track of passes
through a loop. Counters often have the form X =

x + 1.

crash: When a program unexpectedly ceases
operating, possibly damaging or destroying
information in the process.

cursor: A marker or symbol displayed on the
screen that marks where the user's next action will
take effect or where the next character typed from
the keyboard will appear.

debug: To locate and correct an error or the cause
of a problem or malfunction in a computer
system. Typically used to refer to software-related
problems.

Glossary 101

deferred execution: The saving of an Applesoft
program line for execution at a later time as part of
a complete program; occurs when the line is typed
with a line number. Compare immediate
execution.

delay loop: A loop whose purpose is to slow down
the execution of a program.

define: To assign a value to a variable.

disk: An information-storage medium consisting
of a flat, circular magnetic surface on which
information can be recorded in the form of small
magnetized spots, similarly to the way sounds are
recorded on tape.

disk drive: A peripheral device that writes and
reads information on the surface of a magnetic
disk.

display: (1) Information exhibited visually,
especially on the screen of a video display device ~
(2) To exhibit information visually. (3) A display
device.

display device: A device that exhibits information
visually, such as a television receiver or video
monitor.

display screen: The glass or plastic panel on the
front of a display device, on which images are
displayed.

edit: To change or modify; for example, to insert,
remove, replace, or move text in a document.

error message: A message displayed or printed to
notify the user of an error or problem in the
execution of a program.

execute: To perform or carry out a specified
action or sequence of actions, such as those
defined by a program.

file: A collection of information stored as a
named unit on a peripheral storage medium such
as a disk.

filename: The name under which a file is stored
on a disk.

102 Glossary

f°ll'mware: Name applied to programs stored in
read-only memory.

format: (1) The form in which information is
organized or presented. (2) To specify or control
the format of information. (3) To prepare a blank
disk to receive information by dividing its surface
into tracks and sectors; also initialize.

graphics: (1) Information presented in the form
of pictures or images. (2) The display of pictures
or images on a computer's display screen.
Compare text.

hacker: An experienced programmer.

hand control: An optional peripheral device that
can be connected to the Apple II's hand control
connector and has a rotating dial and a push
button; typically used to control game-playing
programs, but can be used in more serious
applications as well.

hang: For a program or system to "spin its wheels"
indefinitely, performing no useful work.

hard copy: Information printed on paper for
human use.

immediate execution: The execution of an
Applesoft program line as soon as it is typed;
occurs when the line is typed without a line
number. Compare deferred execution.

index variable: A variable whose value changes on
each pass through a loop; often called control
variable or loop variable.

infinite loop: A section of a program that repeats
the same sequence of actions indefinitely.

information: Facts, concepts, or instructions
represented in an organized form.

initialize: (1) To set to an initial state or value in
preparation for some computation. (2) To
prepare a blank disk to receive information by
dividing its surface into tracks and sectors; also
form.at.

input: (1) Information transferred into a
computer from some external source, such as the
keyboard, a disk drive, or a modem. (2) The act
or process of transferring such information.

input variable: Variable whose value is assigned
by the user via an INPUT instruction, as opposed
to one whose value is assigned by the programmer
using an assignment or similar instruction.

instruction: A unit of a program in a high-level
programming language that specifies an action for
the computer to perform, typically corresponding
to several instructions of machine language.

interactive: Operating by means of a dialog
between the computer system and a human user.

interactive programming: Generating programs
that operate by means of a dialog between the
computer system and a human user.

interface: The devices, rules, or conventions by
which one component of a system communicates
with another.

inverse video: The display of text on the
computer's display screen in the form of dark dots
on a light (or other single phosphor color)
background, instead of the usual light dots on a
dark background.

keyboard: The set of keys, similar to a typewriter
keyboard, for typing information to the computer.

language: See programming language.

line: See program line.

line number: A number that identifies a program
line in an Applesoft program.

load: To transfer information from a peripheral
storage medium (such as a disk) into main
memory for use; for example, to transfer a
program into memory for execution.

loop: A section of a program that is executed
repeatedly until some condition is met, such as an
index variable reaching a specified ending value.

loop variable: See index variable.

low-resolution graphics: The display of graphics
on the Apple II's display screen as a sixteen-color
array of blocks, 40 columns wide and either 40 or
48 rows high.

memory: A component of a computer system that
can store information for later retrieval; see main
memory, random-access memory, read-only
memory.

menu: A list of choices presented by a program,
usually on the display screen, from which the user
can select.

mode: (1) Any of several ways a computer
interprets information. (2) A state of a computer
or system that determines its behavior.

nested loop: A loop contained within the body of
another loop and executed repeatedly during each
pass through the containing loop.

nested subroutine call: A call to a subroutine from
within the body of another subroutine.

numeric variable: see variable.

operator: A symbol or sequence of characters,
such as + or AND, specifying an operation to be
performed on one or more values (the operands)
to produce a result.

output: (1) Information transferred from a
computer to some external destination, such as
the display screen, a disk drive, a printer, or a
modem. (2) The act or process of transferring
such information.

pass: A single execution of a loop.

precedence: The order in which operators are
applied in evaluating an expression.

printer: A peripheral device that writes
information on paper in a form easily readable by
humans.

program: (1) A set of instructions that describes
actions for a computer to perform in order to
accomplish some task, conforming to the rules
and conventions of a particular programming

Glossary 103

language. In Applesoft, a sequence of program
lines, each with a different line number. (2) To
write a program.

program line: The basic unit of an Applesoft
program, consisting of one or more instructions
separated by colons (:).

programmer: The human author of a program;
one who writes programs.

programming: The activity of writing programs.

programming language: A set of rules or
conventions for writing programs.

prompt: (1) To remind or signal the user that
some action is expected, typically by displaying a
distinctive symbol, a reminder message, or a
menu of choices on the display screen. (2) An
instruction or reminder message that appears on
the display screen.

prompt character: (1) A text character displayed
on the screen to prompt the user for some action.
Often also identifies the program or component of
the system that is doing the prompting; for
example, the prompt character l is used by the
Applesoft BASIC Interpreter. Also called
prompting character. (2) Someone who is always
on time.

prompt message: A message displayed on the
screen to prompt the user for some action. Also
called prompting message.

RAM: See random-access memory.

random-access memory: Memory whose
contents can be both read and written; often
called read-write memory. The contents of an
individual location in random-access memory
can be referred to in an arbitrary or random
order. The information contained in this type of
memory is erased when the computer's power is
turned off, and is permanently lost unless it has
been saved on a more permanent storage
medium, such as a disk. ·Compare read-only
memory.

104 Glossary

read: To transfer information into the computer's
memory from a source external to the computer
(such as a disk drive or modem) or into the
computer's processor from a source external to
the processor (such as the keyboard or main
memory).

read-only memory: Memory whose contents can
be read but not written; used for storing firmware.
Information is written into read-only memory
once, during manufacture; it then remains there
permanently, even when the computer's power is
turned off, and can never be erased or changed.
Compare random-access memory.

read-write memory: See random-access memory.

relational operator: An operator, such as>, that
compares numeric values to produce a logical
result; compare arithmetic operator.

reserved word: A word or sequence of characters
reserved by a programming language for some
special use, and therefore unavailable as a variable
name in a program.

ROM: See read-only memory.

routine: A part of a program that accomplishes
some task subordinate to the overall task of the
program.

run: (1) To execute a program. (2) To load a
program into main memory from a peripheral
storage medium, such as a disk, and execute it.

save: To transfer information from main memory
to a peripheral storage medium for later use.

screen: See display screen.

starting value: The value assigned to the index
variable on the first pass through a loop.

step value: The amount by which the index
variable changes on each pass through a loop.

stepwise ref"mement: A technique of program
development in which broad sections of the
program are laid out first, then elaborated step by
step until a complete program is obtained.

string: An item of information consisting of a
sequence of text characters.

string variable: see variable.

subroutine: A part of a program that can be
executed on request from any point in the
program, and that returns control to the point of
the request on completion.

syntax: The rules governing the structure of
statements or instructions in a programming
language.

system: A coordinated collection of interrelated
and interacting parts organized to perform some
function or achieve some purpose.

text: (1) Information presented in the form of
characters readable by humans. (2) The display of
characters on the Apple II's display screen.
Compare graphics.

user: The person operating or controlling a
computer system.

user interface: The rules and conventions by
which a computer system communicates with the
person operating it.

value: An item of information that can be stored
in a variable, such as a number or a string.

variable: (1) A location in the computer's
memory where a value can be stored. (2) The
symbol used in a program to represent such a
location.

wraparound: The automatic continuation of text
from the end of one line to the beginning of the
next, as on the display screen or a printer.

write: To transfer information from the computer
to a destination external to the computer (such as a
disk drive, printer, or modem) or from the
computer's processor to a destination external to
the processor (such as main memory).

Glossary l 05

Cast of Characters

$ (dollar sign) 22
& (ampersand) 99
+(plus sign) 8-11, 22
- (subtraction operator) 8-11
. (period) 30
•(multiplication operator) 8-11
I (division operator) 8-11
: (colon) 65-66
; (semicolon) 19, 39
< Oess than operator) 39
<= (not greater than operator) 39
<> (not equal to operator) 39
= (equal sign) 12, 39
> (greater than operator) 39
>= (not less than operator) 39
? (question mark) 18, 19- 20, 40
] (right bracket prompt) ix, x

A

ABS instruction 85
adding lines 20
addition operator(+) 8-11

precedence and 10-11
algorithms 66
ampersand (&) 99
animation 56-57
arithmetic 8-11
arithmetic operators 8-9
arrow keys 4
ASC instruction 85
assignment mstructions 18, 85
AT instruction 48-49, 99, 100
ATN instruction 85, 99

Index

B

branching See GOTO instruction;
IF ... THEN instruction

bugs 4-5
See also debugging; errors

c
CALL instruction 86
catalog 29
CAT command 29, 31
centering text 75-76
checkbook balancing

program 66-68
CHR$ instruction 86
clearing screen 20-21
CLEAR instruction 86
code See programming; programs
colon (:) 65-66
COLOR= instruction 47, 86, 99
color graphics 44-51
color monitor 44
comments See REM instruction
computer languages vii
concatenation 22
conditional branching

See IF...THEN instruction
CONT instruction 86
Control-C 37
Control-Reset x
controlled loops 54-58
COS instruction 86
counters 48

D

DATA instruction 86
debugging 4-5, 14, 23-25

by printing 32-33
See also errors

deferred execution 24-25
DEF FN instruction 86
delay loops 57-58
DELETE command 32
Delete key 4
DEL instruction 87
DIM instruction 87
disk drives 28

starting up without x
disks 28
display, 40-column 11, 70
division operator (/) 8-11

precedence and 10-11
dollar sign ($) 22
drawing lines 48-50
DRAW instruction 87

E

editing programs 4-5, 20
END instruction 39, 63-64, 87
equal sign(=) 12
equal to (=) operator 39
error mes.sages 3--4, 24-25

REENTER 23
RETURN WITHOUT GOSUB 64
SYNTAX ERROR 3--4
TYPE MISMATCH 14

errors 4-5
trapping 41, 79
See also debugging

execution 3, 24-25
exit options, designing 79-80
EXP instruction 87

Index 107

F

files See programs
FLASH instruction 87
FN instruction 87
formatting screens 70-76
FOR\NEXT instruction 54-58, 88

STEP instruction and 56-57
40-column display 11

HT AB instruction and 70
fractions 9
FRE instruction 88

G

GET instruction 88
GO SUB\ RETURN

instruction 62-63, 88
GOTO instruction 36-37, 63, 88

IF ... THEN instruction and 40
GR instruction 44-45, 88
graphics

FOR\NEXT instruction and 55-57
low-resolution 44-51
RND instruction and 50-51
variables and 47-48

graphics mode 44-45
greater than (>) operator 39

H

hard copy See printing
HCOLOR= instruction 88, 99
HGR instruction 89
HGR2 instruction 89
HIMEM: instruction 89, 99
HLIN instruction 48-49, 89
HOME instruction 20-21, 89
HPLOT instruction 89
HTAB instruction 70-73, 90

108 Index

I, J, K

IF .. . THEN instruction 37-41, 54, 90
GOTO instruction and 40

immediate execution 24-25
IN# instruction 90, 99
incrementing counters 48
infinite loops 37
INPUT instruction 18-20, 73, 90

string variables and 23
input variable 18
instruction(s)

assignment 18, 85
multiple 65-66
summary of 85-97
See also specific instruction

interactive programming 18, 78-81
INT instruction 90
INVERSE instruction 74-75, 90

L

languages vii
LEFT$ instruction 91
Left-Arrow key 4
LEN instruction 75-76, 91
less than (<) operator 39
LET instruction 91
line number 2, 3, 20
lines

adding 20
drawing 48-50
runover 11

LIST command 21-22, 91
LOAD command 29, 31-32, 91
LOG instruction 91
LOMEM: instruction 91 , 99
loops 36-37

controlled 54-58
delay 57-58

lowercase 3
INVERSE instruction and 75

low-resolution graphics 44-51

M

memory See RAM; ROM
menus 71-73
MID$ instruction 91
modes 44
modular programming 62-68
monitors 44
monochrome monitor 44
multiple instructions 65-66
multiplication operator (*) 8-11

precedence and 10-11

N

naming
numeric variables 13, 23
programs 29-30
string variables 23

NEW command 2-3, 92
NEXT instruction See FOR\NEXT

instruction
NORMAL instruction 74-75, 92
not equal to (<>) operator 39
not greater than (<=) operator 39
not less than (>=) operator 39
NOTRACE instruction 92
numbers, as text 22
numeric variables 11-14

naming 13, 23

0

ON 20
ONERR GOTO instruction 92
ON .. . GOSUB instruction 92
ON ... GOTO instruction 92
operators

arithmetic 8-9
relational 38-41

order of precedence 9-11
parentheses and 10-11

organizing programs 66
OR instruction 99

p

parentheses
precedence and 10-11
reserved words and 99-100
RND instruction and 50

PAUSE program 62--63
PDL instruction 93
PEEK instruction 93
period (.), in filenames 30
PLOT instruction 45-46, 48-49, 93
plus sign (+), string variables

and 22
POKE instruction 93
POP instruction 93
POS instruction 93
PR# command 33, 93, 99
precedence 9-11

parentheses and 10-11
printing 32-33
PRINT instruction 2-4, 14, 19, 93

arithmetic and 8-11
question mark (?) and 40

program line 2, 3, 20
programming viii-ix

interactive 18, 78-81
modular 62--68
resources 81-82

programs viii-ix
editing 4-5, 20
menus and 71-73
naming 29-30
organizing 66
printing 32-33
saving 29-30, 38
"user-friendly" See interactive

programming
prompt character CD ix, x
prompts 19-20, 73

designing 79
inverse 74- 75

public domain software 82

Q

question mark (?) 18, 19-20
PRINT instruction and 40

quotation marks 8

R

RAM (random-access memory) 28
range errors 79
READ instruction 94
REENTER message 23
relational operators 38-41
REM instruction 41, 94
reserved words 14, 20, 99-100
RESTORE instruction 94
RESUME instruction 94
RETURN instruction

See GOSUB\RETURN
instruction

Return key 2-3
RETURN WITHOUT GOSUB

message 64
RIGHT$ instruction 94
Right-Arrow key 4
RND instruct.ion 94

graphics and 50-51
ROM (read-only 'Ttemory) 28
ROT= instruction 94, 99
RUN command 2-3, 95
runover lines 11

s
SA VE command 29-30, 95
SCALE= instruction 95, 99
screen(s)

clearing 20-21
formatting 70-76
low-resolution 45-46

SCRN(instruction 95, 99
semicolon (;) 19, 39
SGN instruction 95
SIN instruction 95
software, public domain 82
Space bar 4

SpaceMaker 73-74
spaces 9
SPC(instruction 95, 99
SPEED= instruction 95, 99
SQR instruction 96
starting up ix-x
STEP instruction 56-57
STOP instruction 96
STR$ instruction 96
string variables 22-23
subroutines 6~--68
subtraction operator(-) 8-11

precedence and 10-11
SYNTAX ERROR message 3-4

T
TAB(instruction 96, 99
tabs See HT AB instruction;

TAB(instruction; Vf AB
instruction

TAN instruction 96
television set 44
text 22-23

centering 75-76
TEXT instruction 46, 96
text mode 46
THEN instruction See IF ... THEN

instruction
TO instruction 100
TRACE instruction 96
trapping errors 41, 79
TYPE MISMATCH message 14
typing mistakes 3, 79

u
uppercase 3

INVERSE instruction and 75
"user-friendly" programs

See interactive programming
users groups 82
USR instruction 96

Index 109

v
VAL instruction 97
variables 11-14

FOR\NEXT instruction and 55
graphics and 47--48
input 18
naming 13, 23
numeric 11-14
string 22-23

VLIN instruction 48--49, 97
VTAB instruction 70-73, 97

w
W AlT instruction 97

X, Y,Z

XDRA W instruction 97
XPLOT instruction 99

110 Index

1HE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system using
the Apple Macintosh™ Plus and
.Microsoft® Word. Proof and
.6nal pages were created on the
Apple LaserWriter™ Plus.
POSfSCRIPT™; the LaserWriter's
page-description language, was
developed by Adobe Systems
Incorporated.

Text type is ITC Garamond®
6. downloadable font distributed
bf Adobe Sytems). Display type
is ITC Avant Garde Gothic®.
Bullets are IT(; Zapf Dingbats®.
Program listings are set in Apple
Courier, a monospaced font.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
408996·1010
TIX171-576

A2U077
030-1318-B
Printed in Singapore.

	A Touch of Applesoft BASIC
	Table of Contents
	Preface
	What's A Computer Language?
	What's A Program?
	Do You Have to Program?
	Why Would You Want to Learn to Program?
	Patience Required
	How to Get Started
	And Now... Begin!

	Session 1: Getting Started
	The Elementary Stuff
	Editing: Program First Aid
	Summary & Review

	Session 2: Arithmetic & Variables
	Arthmetic
	Precedence: The Order of Calculations
	Use Parentheses to Change Precedence
	Variables
	Naming Variables
	Break a Few Rules
	Summary & Review

	Session 3: The Outside World
	Input
	Prompts
	More Editing: Adding Lines
	Cleaning Up with HOME
	LIST
	String Variables
	Variables Rules Recap

	Debugging
	Summary & Review

	Session 4: Using th eDisk & Other Devices
	Computer Memory
	Files & Catalogs
	How to Save Programs
	Reading the Catalog & Retrieving a Program
	Cleaning Up
	For Printer Owners: Printing Your LIstings
	Using What You've Learned
	Summary & Review

	Session 5: Loops & Conditions
	Loops
	GOTO
	Conditional Branching with IF...THEN
	Building on the Model

	Relational Operators
	Use REM for Remarks
	Practice Time
	Summary & Review

	Session 6: Graphics
	Text & Graphics
	A 40-by-40 Canvas
	Seeing Your Listing Again
	Plotting Colors with COLOR=
	Using Variables for Plotting & Coloring
	Incrementing Columns & Rows
	Drawing Horizontal & Vertical Lines
	A Universal Line-Drawer
	Random Graphics
	Summary & Review

	Session 7: Controlled Loops
	FOR / NEXT
	Using STEP with FOR / NEXT
	Delay Loops
	A Quick Review
	Experiment Before You Continue
	Summary & Review

	Session 8: Programming with Style: Modular Programming
	GOSUB / RETURN
	END Protects Subroutines
	Subroutines & Organization
	Multiple Instructions on One Line
	Organize Your Programs: One Step at a Time
	The Great Checkbook Balancing Program Challenge
	One Version

	Summary & Review

	Session 9: Formatting Screens
	Horizontal & Vertical Tabs
	Prompt Placement
	Getting Noticed: INVERSE & NORMAL
	A Text-centering Algorithm
	One Solution to the Centering Problem

	Summary & Review

	Session 10: Programming for People
	A Sordid History
	People-Program Guidelines
	Humanizing Programs Isn't Easy
	It Gets Easier
	Where Do You Go From Here?
	Do It!
	A Parting Word

	Appendix A: A Summary of Applesoft Instructions
	Appendix B: Reserved Words
	Glossary
	Index
	Back Cover

